在空間直角坐標(biāo)系中,z軸上到點(diǎn)A(1,0,2)與B(2,-2,1)距離相等的點(diǎn)的坐標(biāo)為
 
考點(diǎn):空間兩點(diǎn)間的距離公式
專題:空間位置關(guān)系與距離
分析:根據(jù)點(diǎn)C在z軸上,設(shè)出點(diǎn)C的坐標(biāo),再根據(jù)C到A與到B的距離相等,由空間中兩點(diǎn)間的距離公式求得AC,BC,解方程即可求得C的坐標(biāo).
解答: 解:設(shè)C(0,0,z)
由點(diǎn)C到點(diǎn)A(1,0,2)與點(diǎn)B(2,-2,1)的距離相等,得
12+02+(z-2)2=(2-0)2+(-2-0)2+(z-1)2
解得z=-2,故C(0,0,-2)
故答案為:(0,0,-2).
點(diǎn)評(píng):考查空間兩點(diǎn)間的距離公式,空間兩點(diǎn)的距離公式和平面中的兩點(diǎn)距離公式相比較記憶,利于知識(shí)的系統(tǒng)化,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,程序框圖(算法流程圖)的輸出結(jié)果是( 。 
 
A、
1
6
B、
25
24
C、
3
4
D、
11
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=1.270.2,b=log0.3(tan46°),c=2sin29°,則a,b,c的大小關(guān)系是( 。
A、a>b>c
B、c>a>b
C、b>a>c
D、a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=3x2-4kx+5在區(qū)間[-1,3]上是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AE是的⊙O切線,A是切點(diǎn),AD⊥OE于點(diǎn)D,割線EC交⊙O于B,C兩點(diǎn).
(1)證明:O,D,B,C四點(diǎn)共線;
(2)設(shè)∠DBC=50°,∠ODC=30°,求∠OEC的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有甲、乙、丙、丁、戊五位工人參加技能競(jìng)賽培訓(xùn),現(xiàn)分別從甲乙兩人在培訓(xùn)期間參加的若干次預(yù)賽成績(jī)中隨機(jī)抽取6次,用莖葉圖表示這兩組數(shù)據(jù)如圖所示:

(1)現(xiàn)要從甲、乙中兩人中選派一人參加技能競(jìng)賽,從平均成績(jī)及發(fā)揮穩(wěn)定性角度考慮,你認(rèn)為派哪位工人參加合適?請(qǐng)說明理由.
(2)若將頻率視為概率,對(duì)甲工人在今后3次比賽成績(jī)進(jìn)行預(yù)測(cè),記這3次成績(jī)中高于80分的次數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
2x+y-2≥0
x-2y+4≥0
3x-y-3≤0
,則z=x2-2y2最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若角α的終邊在第二象限,則( 。
A、cosαtanα>0
B、sinαtanα>0
C、sinαcosα>0
D、sinα+cosα>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(-x)=f(x),f(x)=f(4-x),且x∈(-1,2)時(shí),f(x)=
cos
π
2
x,x∈(-1,1]
|2x-1-1|,x∈(1,2]
,則函數(shù)g(x)=3f(x)-x,x∈R的零點(diǎn)個(gè)數(shù)為(  )
A、5B、4C、3D、6

查看答案和解析>>

同步練習(xí)冊(cè)答案