A. | -30 | B. | -24 | C. | -20 | D. | 20 |
分析 求得二項(xiàng)式展開(kāi)式的通項(xiàng)公式,再令x的冪指數(shù)等于3,求得r、r′的值,即可求得x3項(xiàng)的系數(shù).
解答 解:二項(xiàng)式(x2-x+1)5 =[(x2-x)+1]5 展開(kāi)式的通項(xiàng)公式為
Tr+1=${C}_{5}^{r}$•(x2-x)r,
對(duì)于(x2-x)r,它的通項(xiàng)公式為
Tr′+1=(-1)r′•${C}_{r}^{r′}$•x2r-3r′,
其中,r′≤r,0≤r≤5,r、r′都是自然數(shù);
令2r-3r′=3,可得$\left\{\begin{array}{l}{r′=1}\\{r=3}\end{array}\right.$,
所以展開(kāi)式中x3項(xiàng)的系數(shù)為
${C}_{5}^{3}$•(-1)•${C}_{3}^{1}$=-30.
故選:A.
點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{16}{3}π$ | B. | $4\sqrt{3}π$ | C. | $\frac{32π}{3}$ | D. | 16π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | “?x∈R,x2-x≤0”的否定是“?x∈R,x2-x≥0” | |
B. | “p∧q為真”是“p∨q為真”的必要不充分條件 | |
C. | “若am2≤bm2,則a≤b”的否命題為真 | |
D. | ?x∈R,sin2$\frac{x}{2}$+cos2$\frac{x}{2}$=$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0或2 | B. | 2或$-\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4α+1>4β+2 | B. | ${log_{\frac{1}{2}}}2α<{log_{\frac{1}{2}}}2β$ | ||
C. | (α+1)3>β3 | D. | α=β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,0)∪(1,2) | B. | (log37,2) | C. | (0,2) | D. | (0,1)∪(log37,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{2π}{3}$ | C. | $\frac{3π}{4}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com