19.(x2-x+1)5的展開(kāi)式中,x3的系數(shù)為( 。
A.-30B.-24C.-20D.20

分析 求得二項(xiàng)式展開(kāi)式的通項(xiàng)公式,再令x的冪指數(shù)等于3,求得r、r′的值,即可求得x3項(xiàng)的系數(shù).

解答 解:二項(xiàng)式(x2-x+1)5 =[(x2-x)+1]5 展開(kāi)式的通項(xiàng)公式為
Tr+1=${C}_{5}^{r}$•(x2-x)r,
對(duì)于(x2-x)r,它的通項(xiàng)公式為
Tr′+1=(-1)r′•${C}_{r}^{r′}$•x2r-3r′,
其中,r′≤r,0≤r≤5,r、r′都是自然數(shù);
令2r-3r′=3,可得$\left\{\begin{array}{l}{r′=1}\\{r=3}\end{array}\right.$,
所以展開(kāi)式中x3項(xiàng)的系數(shù)為
${C}_{5}^{3}$•(-1)•${C}_{3}^{1}$=-30.
故選:A.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在三棱錐P-ABC中,△ABC為等邊三角形,邊長(zhǎng)為$\sqrt{3}$,PA⊥面ABC,PA=2$\sqrt{3}$,則此三棱錐的外接球的表面積為( 。
A.$\frac{16}{3}π$B.$4\sqrt{3}π$C.$\frac{32π}{3}$D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列命題中,真命題是( 。
A.“?x∈R,x2-x≤0”的否定是“?x∈R,x2-x≥0”
B.“p∧q為真”是“p∨q為真”的必要不充分條件
C.“若am2≤bm2,則a≤b”的否命題為真
D.?x∈R,sin2$\frac{x}{2}$+cos2$\frac{x}{2}$=$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若(2k2-3k-2)+(k2-2k)i是純虛數(shù),則實(shí)數(shù)k的值等于( 。
A.0或2B.2或$-\frac{1}{2}$C.$-\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知$α,β∈(\frac{11π}{4},\frac{13π}{4})$,則“tan2α>tan2β”的一個(gè)充分不必要條件是( 。
A.4α+1>4β+2B.${log_{\frac{1}{2}}}2α<{log_{\frac{1}{2}}}2β$
C.(α+1)3>β3D.α=β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知當(dāng)x≥0時(shí),偶函數(shù)y=f(x)的圖象如圖所示,則不等式f(3x-5)<0的解集為( 。
A.(-1,0)∪(1,2)B.(log37,2)C.(0,2)D.(0,1)∪(log37,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x2-2ax-3
(1)若函數(shù)在f(x)的單調(diào)遞減區(qū)間(-∞,2],求函數(shù)f(x)在區(qū)間[3,5]上的最大值.
(2)若函數(shù)在f(x)在單區(qū)間(-∞,2]上是單調(diào)遞減,求函數(shù)f(1)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知雙曲線(xiàn)$\frac{x^2}{a^2}-{y^2}=1,(a>0)$的漸近線(xiàn)方程為$y=±\frac{{\sqrt{3}}}{3}x$,則其焦距為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)向量$\overrightarrow a,\overrightarrow b$滿(mǎn)足$|{\overrightarrow a}|=1,|{\overrightarrow b}|=\sqrt{2}$$,\overrightarrow a⊥(\overrightarrow a+\overrightarrow b)$,則$\overrightarrow a$與$\overrightarrow b$的夾角為(  )
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案