13.若$cosα=\frac{3}{5},α∈(0,\frac{π}{2})$,則s$in(α-\frac{π}{6})$的值為$\frac{{4\sqrt{3}-3}}{10}$.

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求sinα,進(jìn)而利用兩角和與差的正弦函數(shù)即可計(jì)算.

解答 解:∵$cosα=\frac{3}{5},α∈(0,\frac{π}{2})$,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{4}{5}$,
∴s$in(α-\frac{π}{6})$=sinαcos$\frac{π}{6}$-cosαsin$\frac{π}{6}$=$\frac{4}{5}$×$\frac{\sqrt{3}}{2}$-$\frac{3}{5}$×$\frac{1}{2}$=$\frac{{4\sqrt{3}-3}}{10}$.
故答案是:$\frac{{4\sqrt{3}-3}}{10}$.

點(diǎn)評 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角和與差的正弦公式,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.一個袋中有大小相同,編號分別為1,2,3,4,5的五個球,從中有放回地每次取一個球,共取3次,取得三個球的編號之和不小于13的概率為( 。
A.$\frac{4}{125}$B.$\frac{7}{125}$C.$\frac{2}{25}$D.$\frac{4}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列關(guān)于命題的說法錯誤的是( 。
A.命題“若x2-3x+2=0,則x=2”的逆否命題為“若x≠2,則x2-3x+2≠0”
B.“a=2”是“函數(shù)f(x)=logax在區(qū)間(0,+∞)上為增函數(shù)”的充分不必要條件
C.命題“若隨機(jī)變量X~N(1,4),P(X≤0)=m,則P(0<X<2)=1-2m.”為真命題
D.若命題P:?n∈N,2n>1000,則¬P:?n∈N,2n>1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某校為了解1000名高一新生的身體生長狀況,用系統(tǒng)抽樣法(按等距的規(guī)則)抽取40名同學(xué)進(jìn)行檢查,將學(xué)生從1~1000進(jìn)行編號,現(xiàn)已知第18組抽取的號碼為443,則第一組用簡單隨機(jī)抽樣抽取的號碼為(  )
A.16B.17C.18D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知A(3,-1),B=(x,y),C(0,1)三點(diǎn)共線,若x,y均為正數(shù),則$\frac{3}{x}$+$\frac{2}{y}$的最小值是( 。
A.$\frac{5}{3}$B.$\frac{8}{3}$C.8D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,正方體ABCD-A1B1C1D1的棱長為2,點(diǎn)P在正方形ABCD的邊界及其內(nèi)部運(yùn)動.平面區(qū)域W由所有滿足${A_1}P≤\sqrt{5}$的點(diǎn)P組成,則W的面積是$\frac{π}{4}$;四面體P-A1BC的體積的最大值是$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知向量$\overrightarrow p=(1,2)$,$\overrightarrow q=(x,3)$,若$\overrightarrow p⊥\overrightarrow q$,則$|\overrightarrow p+\overrightarrow q|$=5$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在等腰Rt△ABC中,∠BAC=90°,腰長為2,D、E分別是邊AB、BC的中點(diǎn),將△BDE沿DE翻折,得到四棱錐B-ADEC,且F為棱BC中點(diǎn),BA=$\sqrt{2}$.
(1)求證:EF⊥平面BAC;
(2)在線段AD上是否存在一點(diǎn)Q,使得AF∥平面BEQ?若存在,求二面角Q-BE-A的余弦值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an}滿足an+1=an-an-1(n≥2),a1=a,a2=b,設(shè)Sn=a1+a2+…+an,則下列結(jié)論正確的是( 。
A.a100=-a   S100=2b-aB.a100=-b   S100=2b-a
C.a100=-b   S100=b-aD.a100=-a   S100=b-a

查看答案和解析>>

同步練習(xí)冊答案