11.已知函數(shù)f(x)=Asin(ωx)(ω>0)的圖象如圖所示.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若$g(x)=f(x)•cos(2x+\frac{π}{6})$,求g(x)在$[0,\frac{π}{2}]$上的單調(diào)遞減區(qū)間.

分析 (Ⅰ)由圖象求得A及周期,再由周期公式求得ω,則f(x)的解析式可求;
(Ⅱ)把f(x)代入$g(x)=f(x)•cos(2x+\frac{π}{6})$,整理后由復(fù)合函數(shù)的單調(diào)性求得g(x)在$[0,\frac{π}{2}]$上的單調(diào)遞減區(qū)間.

解答 解:(Ⅰ)由圖象可知A=2,
設(shè)函數(shù)f(x)的周期為T,則$\frac{π}{4}-(-\frac{π}{2})=\frac{3}{4}T$,
求得T=π,從而ω=2,
∴f(x)=2sin2x;
(Ⅱ)$g(x)=2sin2xcos(2x+\frac{π}{6})$
=$\sqrt{3}sin2xcos2x-{sin^2}2x$=$\frac{{\sqrt{3}}}{2}sin4x+\frac{1}{2}cos4x-\frac{1}{2}$=$sin(4x+\frac{π}{6})-\frac{1}{2}$,
∴$\frac{π}{2}+2kπ≤4x+\frac{π}{6}≤\frac{3π}{2}+2kπ$,
即$\frac{π}{12}+\frac{kπ}{2}≤x≤\frac{π}{3}+\frac{kπ}{2}$,k∈Z.
令k=0,得$\frac{π}{12}≤x≤\frac{π}{3}$,
∴g(x)在$[0,\frac{π}{2}]$上的單調(diào)遞減區(qū)間為$[\frac{π}{12},\frac{π}{3}]$.

點(diǎn)評(píng) 本題考查由y=Asin(ωx+φ)型函數(shù)的圖象求函數(shù)解析式,考查正弦型復(fù)合函數(shù)的性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=(m-2x)lnx-x,x∈(1,e]有兩個(gè)零點(diǎn),則實(shí)數(shù)m的最大值為( 。
A.3e2B.3eC.6e2D.6e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在${({x^2}+\frac{2}{x^3})^5}$的展開式中,常數(shù)項(xiàng)為40.(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}是等差數(shù)列,前n項(xiàng)和為Sn,若a1=9,S3=21.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若a5,a8,Sk成等比數(shù)列,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知{an}為等差數(shù)列,Sn為其前n項(xiàng)和.若a2=2,S9=9,則a8=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知O為坐標(biāo)原點(diǎn),F(xiàn)為拋物線y2=2px(p>0)的焦點(diǎn),若拋物線與直線l:x-$\sqrt{3}$y-$\frac{p}{2}$=0在第一、四象限分別交于A,B兩點(diǎn).則$\frac{(\overrightarrow{OF}-\overrightarrow{OA})^{2}}{(\overrightarrow{OF}-\overrightarrow{OB})^{2}}$的值等于(  )
A.97+56$\sqrt{3}$B.144C.73+40$\sqrt{3}$D.4p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)$f(x)=\left\{\begin{array}{l}(x-2a)(a-x),x≤1\\ \sqrt{x}+a-1,x>1.\end{array}\right.$
(1)若a=0,x∈[0,4],則f(x)的值域是[-1,1];
(2)若f(x)恰有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=-x2+3x+a,g(x)=2x-x2,若f[g(x)]≥0對(duì)x∈[0,1]恒成立,則實(shí)數(shù)a的取值范圍是[-2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.定義在D上的函數(shù)f(x),如果滿足:對(duì)任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界,已知函數(shù)f(x)=2+asinx-cos2x.
(1)當(dāng)a=-2時(shí),求函數(shù)f(x)的值域,并判斷對(duì)任意x∈R函數(shù)f(x)是否為有界函數(shù),請(qǐng)說明理由;
(2)若對(duì)任意x∈R函數(shù)f(x)是以4為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案