17.“4<k<10”是“方程$\frac{x^2}{k-4}$+$\frac{y^2}{10-k}$=1表示焦點在x軸上的橢圓”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)橢圓的定義以及集合的包含關系判斷即可.

解答 解:∵方程$\frac{x^2}{k-4}$+$\frac{y^2}{10-k}$=1表示焦點在x軸上的橢圓,
∴$\left\{\begin{array}{l}{k-4>0}\\{10-k>0}\\{k-4>10-k}\end{array}\right.$,解得:7<k<10,
故“4<k<10”是“方程$\frac{x^2}{k-4}$+$\frac{y^2}{10-k}$=1表示焦點在x軸上的橢圓”的必要不充分條件,
故選:B.

點評 本題考查了橢圓的定義,考查充分必要條件,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知甲、乙兩組數(shù)據(jù)如莖葉圖所示,它們的中位數(shù)相同,平均數(shù)也相同.
(1)求m,n的值;
(2)若從甲、乙兩組數(shù)據(jù)中隨機各抽取一個數(shù)據(jù),求乙的數(shù)據(jù)大于甲的數(shù)據(jù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知直線l經(jīng)過點(1,3),且與圓x2+y2=1相切,直線l的方程為x=1或4x-3y+5=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.從5件產(chǎn)品中任取2件,則不同取法的種數(shù)為10(結(jié)果用數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設等差數(shù)列{an}的公差d>0,前n項和為Sn,且滿足a2•a3=45,a1+a4=14
(1)試尋找一個等差數(shù)列{bn}和一個非負常數(shù)p,使得等式(n+p)•bn=Sn對于任意的正整數(shù)n恒成立,并說明你的理由;
(2)對于(1)中的等差數(shù)列{bn}和非負常數(shù)p,試求f(n)=$\frac{_{n}}{(n+p)•_{n+1}}$(n∈N*)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.如圖,有一圓盤其中的陰影部分的圓心角為75°,若向圓內(nèi)投鏢,如果某人每次都投入圓內(nèi),那么他投中陰影部分的概率為$\frac{5}{24}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.等差數(shù)列{an}的前n項和為Sn,a1<0,S9=S12,則當Sn取最小值時,n等于( 。
A.10B.11C.9或10D.10或11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=ax2+bx+c,其中a∈N*,b∈N,c∈Z.
(1)若b>2a,且f(sinx)(x∈R)的最大值為2,最小值為-4,試求函數(shù)f(x)的最小值;
(2)若對任意實數(shù)x,不等式4x≤f(x)≤2(x2+1)恒成立,且存在x0使得f(x0)<2(x02+1)成立,求c的值;
(3)對于問(1)中的f(x),若對任意的m∈[-4,1],恒有f(x)≥2x2-mx-14,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=x2+$\frac{a}{x}$(x≠0,a∈R)在(0,2)上為減函數(shù),則實數(shù)a的取值范圍是(  )
A.(0,16]B.(-∞,16)C.(16,+∞)D.[16,+∞)

查看答案和解析>>

同步練習冊答案