【題目】已知橢圓的左焦點為,上頂點為為坐標(biāo)原點,橢圓的離心率且的面積為.
(1)求橢圓的方程;
(2)設(shè)線段的中點為,經(jīng)過的直線與橢圓交于兩點, ,若點關(guān)于軸的對稱點在直線上,求直線方程.
【答案】(1) ;(2) 或.
【解析】試題分析:
(1)由題意結(jié)合橢圓中的幾何關(guān)系計算可得,則橢圓方程為 .
(2)由題意可知當(dāng)垂直于軸時,根據(jù)橢圓的對稱性,滿足題意,
當(dāng)不垂直于軸時,設(shè) 交橢圓于,聯(lián)立直線方程與橢圓方程可得,由題意有,由斜率公式結(jié)合韋達(dá)定理整理計算可得: ,則直線方程為,
即所在的直線方程為或.
試題解析:
(1)因為,所以,
因為 ,所以,
因為,所以,所以,所以,
所以 .
(2)的中點為,當(dāng)垂直于軸時,根據(jù)橢圓的對稱性,顯然滿足,
即直線的方程為,
當(dāng)不垂直于軸時,設(shè) 交橢圓于,
,
所以,
因為點關(guān)于軸對稱點在直線上,所以,
,
故,所以,
綜上可知, 所在的直線方程為或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xoy中,已知直線的參數(shù)方程為為參數(shù), 以原點O為極點,以軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為
(1)寫出直線的極坐標(biāo)方程和曲線C的直角坐標(biāo)方程;
(2)若直線與曲線C相交于A,B 兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直角梯形中, , , , 、分別是邊、上的點,且,沿將折起并連接成如圖的多面體,折后.
(Ⅰ)求證: ;
(Ⅱ)若折后直線與平面所成角的正弦值是,求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點的直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于兩點.
(Ⅰ)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為,.
(1)求直線與圓相切的概率;
(2)將,,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 為圓的直徑,點在圓上, ,矩形所在的平面和圓所在的平面互相垂直,且.
(1)求證:平面平面;
(2)求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一名同學(xué)家開了一個小賣部,他為了研究氣溫對某種引領(lǐng)銷售的影響,記錄了2015年7月至12月每月15號下午14時的氣溫和當(dāng)天的飲料杯數(shù),得到如下資料:
該同學(xué)確定的研究方案是:現(xiàn)從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)取線性回歸方程,再用被選中的2組數(shù)據(jù)進(jìn)行檢驗.
(1)求選取2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選中的是8月與12月的兩組數(shù)據(jù),根據(jù)剩下的4組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若有線性回歸方程得到估計,數(shù)據(jù)與所宣稱的檢驗數(shù)據(jù)的誤差不超過3杯,則認(rèn)為得到的線性回歸方程是理想的,請問(2)所得線性回歸方程是否理想.
附:對于一組數(shù)據(jù),其回歸直線 的斜率和截距的最小二乘法估計分別為: , , .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com