方程x-
1
x
=0
的一個實數(shù)解的存在區(qū)間為( 。
A、(0,1)
B、(0.5,1.5)
C、(-2,1)
D、(2,3)
考點:根的存在性及根的個數(shù)判斷
專題:計算題,函數(shù)的性質(zhì)及應用
分析:直接解方程x-
1
x
=0
,判斷根所在的區(qū)間即可.
解答: 解:解方程x-
1
x
=0
得,
x=1或x=-1;
故選B.
點評:本題考查了根的存在性定理,可以直接解方程,也可以化為函數(shù),由函數(shù)零點存在性定理判斷,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log2x,若f(a)=2,則實數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y,z滿足x+y+z=xyz,則以下命題中為真命題的是
 

①x,y,z中若有兩個互為相反數(shù),則第三個數(shù)必為0;
②x,y,z中若有一個為0,則另外兩個必互為相反數(shù);
③z=
x+y
xy-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列命題:
①函數(shù)y=cos(x-
π
4
)cos(x+
π
4
)的圖象中,相鄰兩個對稱中心的距離為π;
②函數(shù)y=
x+3
x-1
的圖象關于點(1,1)對稱;
③關于x的方程ax2-2ax-1=0有且僅有一個零點,則實數(shù)a=-1;
④已知命題p:對任意的x>1,都有sinx≤1,則?p:存在x≤1,使得sinx>1.
其中所有真命題的序號是( 。
A、①②B、②③C、③④D、②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設點F1(-c,0),F(xiàn)2(c,0)分別是橢圓C:
x2
a2
+y2
=1(a>1)的左、右焦點,P為橢圓C上任意一點,且
PF1
PF2
的最小值為0.
(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l,F(xiàn)2N⊥l,求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=
k-2x
1+k•2x
在定義域上為奇函數(shù),則實數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程lnx=6-2x的根必定屬于區(qū)間( 。
A、(-2,1)
B、(
5
2
,4)
C、(1,
7
4
D、(
7
4
,
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax2+bx+3a+b是偶函數(shù),且其定義域為[a-1,2a],則y=f(x)的最大值為( 。
A、
31
27
B、1
C、
2
3
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若P(x,y)是直線
x
3
+
y
4
=1上的點,則xy的最大值是
 

查看答案和解析>>

同步練習冊答案