函數(shù)f(x)=-x3+3x2,設(shè)g(x)=6lnx-(x)(其中(x)為f(x)的導(dǎo)函數(shù)),若曲線y=g(x)在不同兩點(diǎn)A(x1,g(x1))、B(x2,g(x2))處的切線互相平行,且≥m恒成立,求實(shí)數(shù)m的最大值.

答案:
解析:

  解:

  

  依題意有,且

  即,∴

  

  

  

  令,則

  上單調(diào)遞增

  

  

  

  實(shí)數(shù)的最大值為


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文)已知函數(shù)f(x)=-x3ax2bxc圖像上的點(diǎn)P(1,-2)處的切線方程為y=-3x+1.

(1)若函數(shù)f(x)在x=-2時(shí)有極值,求f(x)的表達(dá)式;

(2)函數(shù)f(x)在區(qū)間[-2,0]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=-x3x2+(a2-1)x,其中a>0.

(1)若函數(shù)yf(x)在x=-1處取得極值,求a的值;

(2)已知函數(shù)f(x)有3個不同的零點(diǎn),分別為0、x1、x2,且x1<x2,若對任意的x∈[x1,x2],f(x)>f(1)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=-x3x2+(m2-1)x(x∈R),其中m>0.

(1)當(dāng)m=1時(shí),求曲線yf(x)在(1,f(1))點(diǎn)處的切線的方程;

(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值;

(3)已知函數(shù)g(x)=f(x)+有三個互不相同的零點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+3x2+9xa.

(1)求f(x)的單調(diào)遞減區(qū)間;

(2)若f(x)在區(qū)間[-2,2]上的最大值為20,求它在該區(qū)間上的最小值.

思路 本題考查多項(xiàng)式的導(dǎo)數(shù)公式及運(yùn)用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和函數(shù)的最值,題目中需注意應(yīng)先比較f(2)和f(-2)的大小,然后判定哪個是最大值從而求出a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:新課標(biāo)高三數(shù)學(xué)導(dǎo)數(shù)專項(xiàng)訓(xùn)練(河北) 題型:解答題

已知函數(shù)f(x)=-x3-ax2+b2x+1(a、b∈R).

(1)若a=1,b=1,求f(x)的極值和單調(diào)區(qū)間;

(2)已知x1,x2為f(x)的極值點(diǎn),且|f(x1)-f(x2)|=|x1-x2|,若當(dāng)x∈[-1,1]時(shí),函數(shù)y=f(x)的圖象上任意一點(diǎn)的切線斜率恒小于m,求m的取值范圍

 

查看答案和解析>>

同步練習(xí)冊答案