【題目】直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為:,傾斜角為銳角的直線l過(guò)點(diǎn)與單位圓相切.
(1)求曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求的值.
【答案】(1),;(2).
【解析】
(1)已知條件化簡(jiǎn),利用極坐標(biāo)和直角坐標(biāo)的互化公式即可得出結(jié)果,由傾斜角為銳角的直線l過(guò)點(diǎn)與單位圓相切,可得l的傾斜角為,根據(jù)直線參數(shù)方程的定義即可得出結(jié)果.
(2)將直線參數(shù)方程和曲線的普通方程聯(lián)立,利用直線方程中參數(shù)的幾何意義,可知,借助韋達(dá)定理即可得出結(jié)果.
(1),
,,
即曲線C的直角坐標(biāo)方程為.
又依題意易得直線l的傾斜角為,所以直線l的參數(shù)方程為:
(2)將代入中,整理得,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的圖象在(為自然對(duì)數(shù)的底數(shù))處的切線方程;
(2)若對(duì)任意的,均有,則稱為在區(qū)間上的下界函數(shù),為在區(qū)間上的上界函數(shù).
①若,求證:為在上的上界函數(shù);
②若,為在上的下界函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線E:()與圓O:相交于A,B兩點(diǎn),且.過(guò)劣弧上的動(dòng)點(diǎn)作圓O的切線交拋物線E于C,D兩點(diǎn),分別以C,D為切點(diǎn)作拋物線E的切線,,相交于點(diǎn)M.
(1)求拋物線E的方程;
(2)求點(diǎn)M到直線距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方體中,,,點(diǎn)P為內(nèi)一點(diǎn)(不含邊界),則不可能為( )
A.等腰三角形B.銳角三角形C.直角三角形D.鈍角三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)). 以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,若直線與曲線交于兩點(diǎn).
(1)若,求;
(2)若點(diǎn)是曲線上不同于的動(dòng)點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為:,傾斜角為銳角的直線l過(guò)點(diǎn)與單位圓相切.
(1)求曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的方程為.在以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,P的極坐標(biāo)為,直線l過(guò)點(diǎn)P.
(1)若直線l與OP垂直,求直線l的直角標(biāo)方程:
(2)若直線l與曲線C交于A,B兩點(diǎn),且,求直線l的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)的和為,記.
(1)若是首項(xiàng)為,公差為的等差數(shù)列,其中,均為正數(shù).
①當(dāng),,成等差數(shù)列時(shí),求的值;
②求證:存在唯一的正整數(shù),使得.
(2)設(shè)數(shù)列是公比為的等比數(shù)列,若存在,(,,)使得,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正四棱錐的所有頂點(diǎn)都在球的球面上,該四棱錐的五個(gè)面所在的平面截球面所得的圓大小相同,若正四棱錐的高為2,則球的表面積為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com