如圖,在Rt△ABC(C為直角)中,D為BC邊上的一個(gè)三等分點(diǎn)(靠近點(diǎn)C),則tan∠BAD的最大值為
 
考點(diǎn):解三角形的實(shí)際應(yīng)用
專題:綜合題,解三角形
分析:設(shè)BC=3a,AC=b,則CD=a,tan∠BAC=
3a
b
,tan∠CAD=
a
b
,利用兩角差的正切公式,結(jié)合基本不等式,即可求得tan∠BAD的最大值.
解答: 解:設(shè)BC=3a,AC=b,則CD=a,
∴tan∠BAC=
3a
b
,tan∠CAD=
a
b
,
∴tan∠BAD=
3a
b
-
a
b
1+
3a2
b2
=
2
b
a
+
3a
b
2
2
3
=
3
3
,
∴tan∠BAD的最大值為
3
3

故答案為:
3
3
點(diǎn)評(píng):本題考查兩角差的正切公式,考查基本不等式,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積、表面積為(  )
A、π+
3
3
,4π-1+
3
+
7
B、2π+
3
,4π+
3
+
7
C、π+
3
3
,4π+1+
3
+
7
D、2π+
3
3
,3π-1+
3
+
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓O的直徑AB=8,C為圓周上一點(diǎn),BC=4,過C作圓的切線l,過點(diǎn)A作直線l的垂線AD,D為垂足,AD與圓O交于點(diǎn)E,則線段DE的長(zhǎng)度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線的準(zhǔn)線l的方程是y=l,且拋物線恒過點(diǎn)P(1,一1),則拋物線焦點(diǎn)弦PQ的另一個(gè)端點(diǎn)Q的軌跡方程是( 。
A、(x-1)2=-8(y-1)
B、(x一1)2=-8(y-1)(x≠1)
C、(y一1)2=8(x一1)
D、(y一1)2=8(x一1)(x≠1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)圓錐的底面圓的半徑為1,體積為
2
2
3
π,則該圓錐的側(cè)面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)安排甲、乙等5名同學(xué)去參加3個(gè)運(yùn)動(dòng)項(xiàng)目,要求每個(gè)項(xiàng)目都有人參加,每人只參加一個(gè)項(xiàng)目,則滿足上述要求且甲、乙兩人不參加同一個(gè)項(xiàng)目的安排方法種數(shù)為( 。
A、114B、162
C、108D、132

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在邊長(zhǎng)為3的等邊三角形ABC中,點(diǎn)P在邊AB上,
AP
PB
,
PA
PC
=1,則實(shí)數(shù)λ的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,A為橢圓上一點(diǎn),AF1⊥AF2,∠AF2F1=60°,求該橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三個(gè)數(shù)1,m,4成等比數(shù)列,則圓錐曲線x2+
y2
m
=1的離心率為 ( 。
A、
2
2
3
B、
2
2
C、
3
D、
3
2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案