8.已知函數(shù)y=sin2x+sin2x+3cos2x,求
(1)函數(shù)的最小正周期
(2)當(dāng)$x∈[-\frac{π}{6},\frac{π}{2}]$時,求函數(shù)的值域.

分析 (1)利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性,求得函數(shù)的最小正周期.
(2)利用正弦函數(shù)的定義域和值域,求得當(dāng)$x∈[-\frac{π}{6},\frac{π}{2}]$時,函數(shù)的值域.

解答 解:(1)∵函數(shù)y=sin2x+sin2x+3cos2x=1+sin2x+2cos2x-1+1=2+sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+2,
∴函數(shù)的最小正周期為$\frac{2π}{2}$=π.
(2)當(dāng)$x∈[-\frac{π}{6},\frac{π}{2}]$時,2x+$\frac{π}{4}$∈[-$\frac{π}{12}$,$\frac{5π}{4}$],∴sin(2x+$\frac{π}{4}$)∈[-$\frac{\sqrt{2}}{2}$,1],∴y=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+2∈[1,$\sqrt{2}$+2],
即函數(shù)的值域為[1,$\sqrt{2}$+2].

點評 本題主要考查三角恒等變換,正弦函數(shù)的周期性、定義域和值域,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知點(1,-2)和($\frac{\sqrt{3}}{3}$,0)在直線l:ax-y-1=0(a≠0)的兩側(cè),則直線l的傾斜角的取值范圍是(  )
A.($\frac{π}{4}$,$\frac{π}{3}$)B.($\frac{π}{3}$,$\frac{2π}{3}$)C.($\frac{2π}{3}$,$\frac{5π}{6}$)D.(0,$\frac{π}{3}$)∪($\frac{3π}{4}$,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)實數(shù)x,y滿足(x+3)2+(y-4)2=4,則$\sqrt{{x}^{2}+{y}^{2}}$的最大值是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,且滿足b2=ac,cosB=$\frac{3}{4}$.
(1)求$\frac{1}{tanA}$+$\frac{1}{tanC}$的值;
(2)設(shè)$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{3}{2}$,求三邊a、b、c的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.隨機(jī)變量X的概率分布規(guī)律為P(X=n)=$\frac{a}{n(n+1)}$(n=1,2,3,4,…,10),中a是常數(shù),則P($\frac{1}{2}$<X<$\frac{5}{2}$)的值為( 。
A.$\frac{7}{15}$B.$\frac{3}{5}$C.$\frac{11}{15}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將乘積(a1+a2+a3+a4)(b1+b2)(c1+a2+a3)展開式多項式后的項數(shù)是( 。
A.4+2+3B.4×2×3C.5+3+4D.5×3×4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.角A是直角△ABC的一個內(nèi)角,且$sinA=\frac{7}{8}$,則cosA=$\frac{\sqrt{15}}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=lg\frac{x+1}{2x-a}+lga$(a是實常數(shù))
(1)求函數(shù)f(x)的定義域;
(2)判斷f(x)的奇偶性與實數(shù)a的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè){an}是各項均不相等的數(shù)列,Sn為它的前n項和,滿足λnan+1=Sn+1(n∈N+,λ∈R).
(1)若a1=1,且a1,a2,a3成等差數(shù)列,求λ的值;
(2)若{an}的各項均不相等,問當(dāng)且僅當(dāng)λ為何值時,a2,a3,…,an,…成等差數(shù)列?試說明理由.

查看答案和解析>>

同步練習(xí)冊答案