已知f(x)=
2x2
x+1
,g(x)=ax+5-2a(a>0),f(x)的值域為A,g(x)的值域為B.若?x1∈[0,1],?x2∈[0,1],f(x1)=g(x2),則a的范圍是
 
考點:函數(shù)的值
專題:計算題,函數(shù)的性質(zhì)及應用
分析:由題意化簡f(x)=
2x2
x+1
=
2(x+1)2-4(x+1)+2
x+1
=2(x+1)+
2
x+1
-4,從而求得0≤f(x)≤1,則原題可化為?x2∈[0,1],使0≤g(x2)≤1,從而求a的范圍.
解答: 解:由題意,
f(x)=
2x2
x+1
=
2(x+1)2-4(x+1)+2
x+1

=2(x+1)+
2
x+1
-4,
∵x+1∈[1,2],
∴4≤2(x+1)+
2
x+1
≤5,
則0≤f(x)≤1,
則原題可化為?x2∈[0,1],使0≤g(x2)≤1,
又∵g(x)=ax+5-2a(a>0)在[0,1]上是增函數(shù),
∴0≤g(0)=5-2a≤1或0≤g(1)=5-a≤1,
解得,2≤a≤
5
2
或4≤a≤5.
故答案為:2≤a≤
5
2
或4≤a≤5.
點評:本題考查了函數(shù)的化簡與函數(shù)的值域的求法,同時考查了存在性問題的處理方法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設a=
1
log43
+
1
log23
,則9a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點列B1(1,y1)、B2(2,y2)、…、Bn(n,yn) (n∈N*)順次為一次函數(shù)y=
1
4
x+
1
12
圖象上的點,點列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N*)順次為x軸正半軸上的點,其中x1=a(0<a<1),對任意n∈N*,點An、Bn、An+1構(gòu)成以Bn為頂點的等腰三角形.如果所有的等腰三角形AnBnAn+1中存在等腰直角三角形,則a的取值可以是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=[ax2+(a-1)2x+a-(a-1)2]ex(其中a∈R).
(1)若x=0為f(x)的極值點,求a得值;
(2)在(1)的條件下,解不等式f(x)>(x-1)(
1
2
x2+x+1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1 F2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點,若橢圓上存在一點P使得∠F1PF2=
π
3
,則橢圓的離心率e的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若將函數(shù)y=sin(ωx+
π
3
)(ω>0)的圖象向左平移
π
4
個單位,與函數(shù)y=sin(ωx+
π
4
)的圖象重合,則ω的最小值為( 。
A、
1
12
B、
1
3
C、2
D、
23
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某地草莓從2月1日開始上市,通過市場調(diào)查,得到草莓的種植成本Q(單位:元/1000kg)與上市時間t(單位:天,從2月1日開始計算)的數(shù)據(jù)如下表:
上市時間t50100150
種植成本Q350020005500
(Ⅰ)根據(jù)上表數(shù)據(jù),從下列函數(shù)中(ab≠0)選取一個函數(shù)描述草莓的種植成本Q與上市時間t的變化關系,說明選取該函數(shù)的理由,并求出相應的解析式.
①Q(mào)=at+b;②Q=at2+bt+c;③Q=abt;④Q=a•logbt.
(Ⅱ)利用你選取的函數(shù),求草莓的種植成本最低時的上市時間及最低種植成本.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)過點A(0,5),B(-8,-3),C、D在該橢圓上,直線CD過原點O,且在線段AB的右下側(cè).
(1)求橢圓G的方程;
(2)求四邊形ABCD 的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-x-12>0},B={x|(x+a)(x-2a)≤0},其中a>0.
(1)求集合A;
(2)若A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案