【題目】已知三棱錐(如圖1)的平面展開圖(如圖2)中,四邊形為邊長為的正方形,△ABE和△BCF均為正三角形,在三棱錐中:

(I)證明:平面 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)若點在棱上,滿足, ,點在棱上,且,的取值范圍.

【答案】見解析;; .

【解析】試題分析:第一問取中點根據(jù)等腰三角形的性質(zhì)求得,根據(jù)題中所給的邊長,利用勾股定理求得,利用線面垂直的判定定理以及面面垂直的判定定理得到結果;第二問根據(jù)題中所給的條件建立空間直角坐標系,寫出相應的點的坐標,求得面的法向量,利用法向量所成角的余弦值得出結果;第三問利用向量間的關系,利用向量垂直的條件,利用向量的數(shù)量積等于0,得出所求的比值的關系式,利用函數(shù)的有關知識求得結果.

)方法1:

的中點為,連接 . 由題意

, ,

因為在中, , 的中點

所以

因為在中, , ,

所以

因為, 平面

所以平面

因為平面

所以平面 平面

方法2:

的中點為,連接, .

因為在中, , 的中點

所以,

因為, ,

所以

所以

所以

因為, 平面

所以平面

因為平面

所以平面 平面

方法3:

的中點為,連接,因為在中, ,

所以

的中點,連接, .

因為在中, 的中點

所以.

因為在中, 的中點

所以.

因為, 平面

所以平面

因為平面

所以

因為, 平面

所以平面

因為平面

所以平面 平面

)由平面, ,如圖建立空間直角坐標系,則

, , ,

平面,故平面的法向量為

,

設平面的法向量為,則

,得, ,即

由二面角是銳二面角,

所以二面角的余弦值為

)設, ,則

,μ是關于λ的單調(diào)遞增函數(shù),

時,

所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,我國PM2.5標準采用世界衛(wèi)生組織設定的最寬限值,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;75微克/立方米及其以上空氣質(zhì)量為超標.

某試點城市環(huán)保局從該市市區(qū)2016年全年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機抽取6天的數(shù)據(jù)作為樣本,監(jiān)測值莖葉圖(十位為莖,個位為葉)如圖所示,若從這6天的數(shù)據(jù)中隨機抽出2,

(1)求恰有一天空氣質(zhì)量超標的概率;

(2)求至多有一天空氣質(zhì)量超標的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,兩條相交線段、的四個端點都在橢圓上,其中直線的方程為,直線的方程為.

(1)若,,求的值;

(2)探究:是否存在常數(shù),當變化時,恒有?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是直角梯形, ,

,點在線段上,且, , 平面.

1)求證:平面平面;

2)當四棱錐的體積最大時,求四棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)當時,求曲線在點處的切線方程;

(Ⅱ)若函數(shù)有唯一零點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),的在數(shù)集上都有定義,對于任意的,當時,成立,則稱是數(shù)集的限制函數(shù).

(1)求上的限制函數(shù)的解析式;

(2)證明:如果在區(qū)間上恒為正值,則上是增函數(shù);[注:如果在區(qū)間上恒為負值,則在區(qū)間上是減函數(shù),此結論無需證明,可以直接應用]

(3)利用(2)的結論,求函數(shù)上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若方程內(nèi)有兩個不等實根,求的取值范圍(其中為自然對數(shù)的底);

2)令,如果圖象與軸交于,中點為,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

已知函數(shù)為自然對數(shù)的底數(shù))

1)求的單調(diào)區(qū)間,若有最值,請求出最值;

2)是否存在正常數(shù),使的圖象有且只有一個公共點,且在該公共點處有共同的切線?若存在,求出的值,以及公共點坐標和公切線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】只紅鈴蟲的產(chǎn)卵數(shù)y和溫度x有關,現(xiàn)收集了7組觀測數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

27

81

3.6

152

2936

38

其中

(1)根據(jù)散點圖判斷,e為自然對數(shù)的底數(shù))哪一個更適宜作為紅鈴蟲的產(chǎn)卵數(shù)y和溫度x的回歸方程類型?(給出判斷即可,不必說明理由)

(2)根據(jù)(1)的判斷結果及表中數(shù)據(jù),建立y關于x的回歸方程;

(3)根據(jù)(2)的結果,當溫度為37度時紅鈴蟲的產(chǎn)卵數(shù)y的預報值是多少?

參考公式:對于一組數(shù)據(jù),,,其線性回歸方程的系數(shù)的最小二乘法估計值為

參考數(shù)據(jù):,,

查看答案和解析>>

同步練習冊答案