直線x+y•tan30°+1=0的傾斜角是
 
考點(diǎn):直線的傾斜角
專題:直線與圓
分析:化直線的方程為斜截式可得直線的斜率,由直線傾斜角和斜率的關(guān)系可得.
解答: 解:直線x+y•tan30°+1=0可化為x+
3
3
y+1=0,
進(jìn)而可得y=-
3
x-
3

∴直線的斜率為-
3
,
設(shè)直線的傾斜角為α,0≤α<π,
由tanα=-
3
可得α=
3

故答案為:
3
點(diǎn)評(píng):本題考查直線的傾斜角,涉及直線方程的轉(zhuǎn)化和正切函數(shù),屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}、{bn}滿足:a1=
1
4
,an+bn=1,bn+1=
bn
(1-an)(1+an)

(1)設(shè)cn=
1
bn-1
,求證:數(shù)列{cn}是等差數(shù)列,并求bn的通項(xiàng)公式;
(2)求Sn=a1a2+a2a3+a3a4+…+anan+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x=-2是函數(shù)f(x)=
1
2
x2ex+nx3的一個(gè)極值點(diǎn),其中n∈R.
(1)求f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[-2,2]時(shí),不等式f(x)>m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式x2+2x+a>0對(duì)任意x∈[1,+∞)恒成立,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=x2-2ax+1,若它的增區(qū)間是[2,+∞),則a
 
,若它在[1,+∞)上遞增,則a
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中:①y=x-1;②y=x2;③y=
1
x
;④y=|x-1|;⑤y=
x+1;(x>0)
x-1;(x<0)
;⑥y=lgx.其中在定義域內(nèi)為單調(diào)函數(shù)的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2-2x+3在區(qū)間[-1,2)的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用符號(hào)[a)表示超過(guò)a的最小整數(shù),如[π)=4,[-1.08)=-1,則有下列命題:
①函數(shù)f(x)=[x)-x,則f(x)定義域?yàn)镽,值域?yàn)椋?,1];
②如果數(shù)列{an}是等差數(shù)列,n∈N*,那么數(shù)列{[an)}也是等差數(shù)列;
③若x,y∈{0,
5
2
,3,1,5,
2
3
,-
2
3
,7},則滿足方程[x)•[y)=4的解有五組;
④已知向量
a
=(x,y),
b
=([x),[y)),則<
a
b
>不可能為鈍角.
其中,所有正確命題的序號(hào)應(yīng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(0,2,1),
b
=(0,-4,-2),則向量
a
,
b
的關(guān)系為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案