【題目】已知傾斜角為的直線過點(diǎn)和點(diǎn),在第一象限,;
(1)求點(diǎn)的坐標(biāo);
(2)若直線與兩平行直線,相交于兩點(diǎn),且,求實(shí)數(shù)的值;
(3)對(duì)于平面上任一點(diǎn),當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),稱的最小值為與線段的距離,試求點(diǎn),到線段的距離關(guān)于的函數(shù)關(guān)系式.
【答案】(1);(2);(3)
【解析】
(1)寫出的方程,設(shè)點(diǎn),結(jié)合得到關(guān)于的方程組,從而得到的坐標(biāo);(2)求出直線與和的交點(diǎn),然后根據(jù)兩點(diǎn)間距離公式得到關(guān)于的方程,從而得到的值;(3)設(shè),表示出,根據(jù)二次函數(shù)的對(duì)稱軸進(jìn)行分類討論,從而得到關(guān)于的函數(shù)關(guān)系式.
(1)傾斜角為的直線過點(diǎn)和點(diǎn),
所以直線的方程為,
設(shè)點(diǎn),在第一象限,,
,
所以,
解得,舍去負(fù)值
所以.
(2)直線與兩平行直線,相交于兩點(diǎn)
,解得,即,
,解得,即,
因?yàn)?/span>,
所以,
解得
(3)設(shè)線段上任意一點(diǎn)坐標(biāo)為,
,
即
,
因?yàn)?/span>,所以,
當(dāng),即時(shí),
,
當(dāng),即時(shí),在上單調(diào)遞減,
所以,
綜上所述,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修:坐標(biāo)系與參數(shù)方程選講.
在平面直角坐標(biāo)系中,曲線(為參數(shù),實(shí)數(shù)),曲線
(為參數(shù),實(shí)數(shù)). 在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,射線與交于兩點(diǎn),與交于兩點(diǎn). 當(dāng)時(shí), ;當(dāng)時(shí), .
(1)求的值; (2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且經(jīng)過點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)過點(diǎn)的直線l與橢圓C交于,兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的焦距為,且C過點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)、分別是橢圓C的下頂點(diǎn)和上頂點(diǎn),P是橢圓上異于、的任意一點(diǎn),過點(diǎn)P作軸于M,N為線段PM的中點(diǎn),直線與直線交于點(diǎn)D,E為線段的中點(diǎn),O為坐標(biāo)原點(diǎn),則是否為定值,若是,請(qǐng)求出定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與拋物線(常數(shù))相交于不同的兩點(diǎn)、,且(為定值),線段的中點(diǎn)為,與直線平行的切線的切點(diǎn)為(不與拋物線對(duì)稱軸平行或重合且與拋物線只有一個(gè)公共點(diǎn)的直線稱為拋物線的切線,這個(gè)公共點(diǎn)為切點(diǎn)).
(1)用、表示出點(diǎn)、點(diǎn)的坐標(biāo),并證明垂直于軸;
(2)求的面積,證明的面積與、無關(guān),只與有關(guān);
(3)小張所在的興趣小組完成上面兩個(gè)小題后,小張連、,再作與、平行的切線,切點(diǎn)分別為、,小張馬上寫出了、的面積,由此小張求出了直線與拋物線圍成的面積,你認(rèn)為小張能做到嗎?請(qǐng)你說出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中,,,,,點(diǎn)D,E分別為AB,的中點(diǎn).
(1)求證:平面平面;
(2)求異面直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面是矩形, 平面, ,以的中點(diǎn)為球心, 為直徑的球面交于點(diǎn),交于點(diǎn).
(1)求證:平面平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“搜索指數(shù)”是網(wǎng)民通過搜索引擎,以每天搜索關(guān)鍵詞的次數(shù)為基礎(chǔ)所得到的統(tǒng)計(jì)指標(biāo).“搜索指數(shù)”越大,表示網(wǎng)民對(duì)該關(guān)鍵詞的搜索次數(shù)越多,對(duì)該關(guān)鍵詞相關(guān)的信息關(guān)注度也越高.下圖是2017年9月到2018年2月這半年中,某個(gè)關(guān)鍵詞的搜索指數(shù)變化的走勢(shì)圖.
根據(jù)該走勢(shì)圖,下列結(jié)論正確的是( )
A. 這半年中,網(wǎng)民對(duì)該關(guān)鍵詞相關(guān)的信息關(guān)注度呈周期性變化
B. 這半年中,網(wǎng)民對(duì)該關(guān)鍵詞相關(guān)的信息關(guān)注度不斷減弱
C. 從網(wǎng)民對(duì)該關(guān)鍵詞的搜索指數(shù)來看,去年10月份的方差小于11月份的方差
D. 從網(wǎng)民對(duì)該關(guān)鍵詞的搜索指數(shù)來看,去年12月份的平均值大于今年1月份的平均值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解小學(xué)生的體能情況,抽取了某小學(xué)同年級(jí)部分學(xué)生進(jìn)行跳繩測(cè)試,將所得的數(shù)據(jù)整理后畫出頻率分布直方圖,已知圖中從左到右的前三個(gè)小組的頻率分別是0.1,0.3,0.4第一小組的頻數(shù)是5.
(1)求第四小組的頻率和該組參加這次測(cè)試的學(xué)生人數(shù);
(2)在這次測(cè)試中,學(xué)生跳繩次數(shù)的中位效落在第幾小組內(nèi)?
(3)從第一小組中選出2人,第三小組中選出3人組成隊(duì)伍代表學(xué)校參加區(qū)里的小學(xué)生體質(zhì)測(cè)試,在測(cè)試的某一環(huán)節(jié),需要從這5人中任選兩人參加測(cè)試,求這兩人來自同一小組的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com