分析 (Ⅰ)連接AC,BP,利用直徑所對的圓周角為直角,圓的切線的性質(zhì),證明∠CBP=∠CPB,即可證明:BC=PC;
(Ⅱ)求出AC=2$\sqrt{3}$,DC=$\sqrt{3}$,利用切割線定理求DP•DA的值.
解答 (Ⅰ)證明:連接AC,BP,
∵AB是半圓O的直徑,C為圓周上一點,∴∠ACB=90°,
即∠BCT+∠ACD=90°,
又∵AD⊥DC,∴∠DAC+∠ACD=90°,
∴∠BCT=∠DAC,
又∵直線DT是圓O的切線,∴∠CPB=∠BCT,
又∠DAC=∠CBP,∴∠CBP=∠CPB,∴BC=PC.----------(5分)
(Ⅱ)解:由題意知點A,B,T,D四點共圓,∴∠DAB=60°,
∴∠DAC=∠CAB=30°,
∴AC=2$\sqrt{3}$,DC=$\sqrt{3}$
∴DP•DA=DC2=3--------------(10分)
點評 本題考查圓的切線的性質(zhì),考查切割線定理的運用,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com