已知橢圓的右焦點與拋物線的焦點重合,左端點為
(1)求橢圓的方程;
(2)過橢圓的右焦點且斜率為的直線被橢圓截的弦長。

(1)(2)

解析試題分析:解:(1)因為拋物線的焦點為,        2分
橢圓的左端點為
          4分
          6分
所求橢圓的方程為       7分
⑵∴橢圓的右焦點,∴的方程為:,      9分
代入橢圓C的方程,化簡得,          10分
由韋達(dá)定理知,         12分
從而 
由弦長公式,得,
即弦AB的長度為         14分
考點:橢圓的方程,直線與橢圓的位置關(guān)系
點評:解決的關(guān)鍵是利用聯(lián)立方程組,結(jié)合韋達(dá)定理來求解,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓C的兩個焦點為F1、F2,點B1為其短軸的一個端點,滿足,。

(1)求橢圓C的方程;
(2)過點M 做兩條互相垂直的直線l1、l2設(shè)l1與橢圓交于點A、Bl2與橢圓交于點C、D,求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線實軸在軸,且實軸長為2,離心率,  L是過定點的直線.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)判斷L能否與雙曲線交于,兩點,且線段恰好以點為中點,若存在,求出直線L的方程,若不存,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)拋物線,為焦點,為準(zhǔn)線,準(zhǔn)線與軸交點為
(1)求;
(2)過點的直線與拋物線交于兩點,直線與拋物線交于點.
①設(shè)三點的橫坐標(biāo)分別為,計算:的值;
②若直線與拋物線交于點,求證:三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)已知橢圓()過點,其左、右焦點分別為,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)若是直線上的兩個動點,且,則以為直徑的圓是否過定點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題共14分)
已知橢圓C:,左焦點,且離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線與橢圓C交于不同的兩點不是左、右頂點),且以為直徑的圓經(jīng)過橢圓C的右頂點A.   求證:直線過定點,并求出定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題14分)
已知橢圓)過點(0,2),離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過定點(2,0)的直線與橢圓相交于兩點,且為銳角(其中為坐標(biāo)原點),求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè)點到直線的距離與它到定點的距離之比為,并記點的軌跡為曲線
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè),過點的直線與曲線相交于兩點,當(dāng)線段的中點落在由四點構(gòu)成的四邊形內(nèi)(包括邊界)時,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓)過點(0,2),離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過定點(2,0)的直線與橢圓相交于兩點,且為銳角(其中為坐標(biāo)原點),求直線斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案