解:如圖,AB^MA,AB^AD,得AB^面MAD,E、F分別是AD和BC的中點(diǎn),則EF∥AB,得EF^平面MAD,ME^EF.設(shè)球O是與平面MAD,平面ABCD,平面MBC都相切的球,由對(duì)稱性,O是DMEF的內(nèi)心,圓O的半徑r滿足r=.又設(shè)正方形底面邊長(zhǎng)為a,得FE=a,又由SDMAD=1,得到ME=,MF=,由此得
r=.且當(dāng)a=,即a=時(shí),內(nèi)切球的半徑為最大,最大半徑為-1. 再證明球心到側(cè)面MAB和面MCD的距離大于-1,因而所求的最大球半徑為-1.(證略) |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:044
設(shè)棱錐M-ABCD的底面是正方形,且MA=MD,MA^AB,如果DAMD的面積為1,試求能夠放入這個(gè)棱錐的最大球的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)棱錐M-ABCD的底面是正方形,且MA=MD,MA⊥AB,如果ΔAMD的面積為1,試求能夠放入這個(gè)棱錐的最大球的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com