6.設(shè)x,y∈R,則“x-y>1”是“x>y”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)充分必要條件的定義以及不等式的性質(zhì)判斷即可.

解答 解:由x-y>1,能推出x>y,是充分條件,
而x>y推不出x-y>1,不是必要條件,
故選:A.

點(diǎn)評(píng) 本題考查了充分必要條件,考查不等式的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2|$\overrightarrow$|=2,|$\overrightarrow{a}$-4$\overrightarrow$|=2$\sqrt{7}$,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)a>b>c,且a+b+c=0,求證:$\sqrt{^{2}-ac}$<$\sqrt{3}$a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)f(x)=|x+1|+|x-a|,(a>0)
(1)若a=2時(shí),解不等式f(x)≤4;
(2)若不等式f(x)≤4的對(duì)一切x∈(a,2)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖矩形ABCD兩條對(duì)角線相交于M(2,0),AB邊所在直線方程為x-3y-6=0,點(diǎn)T(-1,1)在AD邊所在直線上,
(1)求AD邊所在直線的方程;
(2)求矩形ABCD外接圓的方程;
(3)過(guò)外接圓外一點(diǎn)N(1,6),向圓作兩條切線,切點(diǎn)分別為E、F,求EF所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知f(10x)=x,則f(100)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=lnx-x2+x-m
(Ⅰ)求函數(shù)f(x)的極值
(Ⅱ)若函數(shù)f(x)<2x-x2-(x-2)ex在x∈(0,3)上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知拋物線y2=12x的準(zhǔn)線與x軸的交點(diǎn)為K,點(diǎn)A在拋物線上且|AK|=$\sqrt{2}$|AF|,則A點(diǎn)的橫坐標(biāo)為( 。
A.2$\sqrt{2}$B.2$\sqrt{3}$C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知向量$\overrightarrow a=(1,2),\overrightarrow b=(-2,3)$,當(dāng)向量$m\overrightarrow a+n\overrightarrow b$與向量$\overrightarrow a-2\overrightarrow b$共線,(m,n≠0),則直線mx+ny+1=0的斜率為(  )
A.$\frac{22}{3}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{22}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案