解:(Ⅰ)若
,則
,
.
當(dāng)x∈(0,e-1)時,f'(x)>0,f(x)單調(diào)遞增;
當(dāng)x∈(e-1,+∞)時,f'(x)<0,f(x)單調(diào)遞減.…(2分)
又因為f(1)=0,f(e)=0,所以
當(dāng)x∈(0,1)時,f(x)<0;當(dāng)x∈(1,e-1)時,f(x)>0;
當(dāng)x∈(e-1,e)時,f(x)>0;當(dāng)x∈(e,+∞)時,f(x)<0.…(4分)
故y=|f(x)|的極小值點(diǎn)為1和e,極大值點(diǎn)為e-1.…(6分)
(Ⅱ)不等式
,
整理為
.…(*)
設(shè)
,
則
(x>0)=
=
.…(8分)
①當(dāng)a≤0時,2ax-e<0,又x>0,所以,
當(dāng)x∈(0,e)時,g'(x)>0,g(x)遞增;
當(dāng)x∈(e,+∞)時,g'(x)<0,g(x)遞減.
從而g(x)
max=g(e)=0.
故,g(x)≤0恒成立.…(11分)
②當(dāng)a>0時,
=
.
令
,解得
,則當(dāng)x>x
1時,
;
再令
,解得
,則當(dāng)x>x
2時,
.
取x
0=max(x
1,x
2),則當(dāng)x>x
0時,g'(x)>1.
所以,當(dāng)x∈(x
0,+∞)時,g(x)-g(x
0)>x-x
0,即g(x)>x-x
0+g(x
0).
這與“g(x)≤0恒成立”矛盾.
綜上所述,a≤0.…(14分)
分析:(Ⅰ)把
代入可得函數(shù)的解析式,進(jìn)而可得導(dǎo)函數(shù)和單調(diào)區(qū)間,可得函數(shù)的極值點(diǎn);
(Ⅱ)原不等式等價于
,設(shè)
,通過求導(dǎo)數(shù),分a≤0,和a>0討論可得答案.
點(diǎn)評:本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,涉及函數(shù)的恒成立問題,屬中檔題.