若f(x0)是函數(shù)f(x)在點x0附近的某個局部范圍內(nèi)的最大(。┲,則稱f(x0)是函數(shù)f(x)的一個極值,x0為極值點.已知a∈R,函數(shù)f(x)=lnx-a(x-1).
(Ⅰ)若a=
1
e-1
,求函數(shù)y=|f(x)|的極值點;
(Ⅱ)若不等式f(x)≤-
ax2
e2
+
(1+2a-ea)x
e
恒成立,求a的取值范圍.
(e為自然對數(shù)的底數(shù))
(Ⅰ)若a=
1
e-1
,則f(x)=lnx-
x-1
e-1
,f′(x)=
1
x
-
1
e-1

當x∈(0,e-1)時,f'(x)>0,f(x)單調(diào)遞增;
當x∈(e-1,+∞)時,f'(x)<0,f(x)單調(diào)遞減.…(2分)
又因為f(1)=0,f(e)=0,所以
當x∈(0,1)時,f(x)<0;當x∈(1,e-1)時,f(x)>0;
當x∈(e-1,e)時,f(x)>0;當x∈(e,+∞)時,f(x)<0.…(4分)
故y=|f(x)|的極小值點為1和e,極大值點為e-1.…(6分)
(Ⅱ)不等式f(x)≤-
ax2
e2
+
(1+2a-ea)x
e
,
整理為lnx+
ax2
e2
-
(1+2a)x
e
+a≤0
.…(*)
設(shè)g(x)=lnx+
ax2
e2
-
(1+2a)x
e
+a

g′(x)=
1
x
+
2ax
e2
-
1+2a
e
(x>0)=
2ax2-(1+2a)ex+e2
e2x
=
(x-e)(2ax-e)
e2x
.…(8分)
①當a≤0時,2ax-e<0,又x>0,所以,
當x∈(0,e)時,g'(x)>0,g(x)遞增;
當x∈(e,+∞)時,g'(x)<0,g(x)遞減.
從而g(x)max=g(e)=0.
故,g(x)≤0恒成立.…(11分)
②當a>0時,g′(x)=
(x-e)(2ax-e)
e2x
=(x-e)(
2a
e2
-
1
ex
)

2a
e2
-
1
ex
=
a
e2
,解得x1=
e
a
,則當x>x1時,
2a
e2
-
1
ex
a
e2

再令(x-e)
a
e2
=1
,解得x2=
e2
a
+e
,則當x>x2時,(x-e)
a
e2
>1

取x0=max(x1,x2),則當x>x0時,g'(x)>1.
所以,當x∈(x0,+∞)時,g(x)-g(x0)>x-x0,即g(x)>x-x0+g(x0).
這與“g(x)≤0恒成立”矛盾.
綜上所述,a≤0.…(14分)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如果f(x0)是函數(shù)f(x)的一個極值,稱點(x0,f(x0))是函數(shù)f(x)的一個極值點.已知函數(shù)f(x)=(ax-b)e
a
x
(x≠0且a≠0)
(1)若函數(shù)f(x)總存在有兩個極值點A,B,求a,b所滿足的關(guān)系;
(2)若函數(shù)f(x)有兩個極值點A,B,且存在a∈R,求A,B在不等式|x|<1表示的區(qū)域內(nèi)時實數(shù)b的范圍.
(3)若函數(shù)f(x)恰有一個駐點A,且存在a∈R,使A在不等式
|x|<1
|y|<e2
表示的區(qū)域內(nèi),證明:0≤b<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉興二模)若f(x0)是函數(shù)f(x)在點x0附近的某個局部范圍內(nèi)的最大(。┲,則稱f(x0)是函數(shù)f(x)的一個極值,x0為極值點.已知a∈R,函數(shù)f(x)=lnx-a(x-1).
(Ⅰ)若a=
1
e-1
,求函數(shù)y=|f(x)|的極值點;
(Ⅱ)若不等式f(x)≤-
ax2
e2
+
(1+2a-ea)x
e
恒成立,求a的取值范圍.
(e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若f(x0)是函數(shù)f(x)在點x0附近的某個局部范圍內(nèi)的最大(。┲,則稱f(x0)是函數(shù)f(x)的一個極值,x0為極值點.已知a∈R,函數(shù)f(x)=lnx-a(x-1).
(Ⅰ)若數(shù)學公式,求函數(shù)y=|f(x)|的極值點;
(Ⅱ)若不等式數(shù)學公式恒成立,求a的取值范圍.
(e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如果f(x0)是函數(shù)f(x)的一個極值,稱點(x0,f(x0))是函數(shù)f(x)的一個極值點.已知函數(shù)f(x)=(ax-b)e
a
x
(x≠0且a≠0)
(1)若函數(shù)f(x)總存在有兩個極值點A,B,求a,b所滿足的關(guān)系;
(2)若函數(shù)f(x)有兩個極值點A,B,且存在a∈R,求A,B在不等式|x|<1表示的區(qū)域內(nèi)時實數(shù)b的范圍.
(3)若函數(shù)f(x)恰有一個駐點A,且存在a∈R,使A在不等式
|x|<1
|y|<e2
表示的區(qū)域內(nèi),證明:0≤b<1.

查看答案和解析>>

同步練習冊答案