7.已知銳角三角形的三邊長分別為1,2,a,則a的取值范圍是( 。
A.(3,5)B.($\sqrt{3},\sqrt{5}$)C.($\sqrt{3},5$)D.($\sqrt{5},3$)

分析 由△ABC的三邊長,根據(jù)余弦定理的推論得到△ABC為銳角三角形時余弦值大于0,列出不等式組即可求出a的取值范圍.

解答 解:∵△ABC三邊長分別為1、2、a,
且△ABC為銳角三角形,
當(dāng)2為最大邊時2≥a,設(shè)2所對的角為α,
根據(jù)余弦定理得:cosα=$\frac{{a}^{2}+1{-2}^{2}}{2a}$>0,
∵a>0,
∴a2-3>0,
解得2≥a>$\sqrt{3}$;
當(dāng)a為最大邊時a>2,設(shè)a所對的角為β,
根據(jù)余弦定理得:cosβ=$\frac{1{+2}^{2}{-a}^{2}}{2×2×1}$>0,
∴5-a2>0,
解得:2<a<$\sqrt{5}$,
綜上,實數(shù)a的取值范圍為($\sqrt{3}$,$\sqrt{5}$).
故選:B.

點評 本題考查了三角形的形狀判斷以及余弦定理的應(yīng)用問題,利用了分類討論的思想,解題關(guān)鍵是利用余弦定理推論得出最大邊所對角的余弦值大于0,進(jìn)而根據(jù)兩邊長1和2求出第三邊a的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.二次不等式ax2+bx+c<0的解集為{x|x<$\frac{1}{3}$或x>$\frac{1}{2}$},則關(guān)于x的不等式cx2-bx+a>0的解集為(-3,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=$\frac{{m+{e^{2x+1}}}}{2x+1}$在x=0處的切線與直線x-2y=0垂直,則m=( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系中,O為坐標(biāo)原點,f(x)=$\overrightarrow{OA}$•$\overrightarrow{OC}$-(2m+$\frac{2}{3}$)•|$\overrightarrow{AB}$|;A、B、C三點滿足滿足$\overrightarrow{OC}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$.
(Ⅰ)求證:A、B、C三點共線;
(Ⅱ)已知A(1,cosx),B(1+cosx,cosx)(0≤x≤$\frac{π}{2}$ ),的最小值為-$\frac{3}{2}$,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.下列語句的否定形式是什么?
①a>0;②a=0且b=2;③我們都是中國人;④我們都不是中國人;⑤我們至多一個是中國人;⑥我們至少5個是中國人;⑦我們班任意一個是中國人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=sin($\frac{1}{2}$x+$\frac{π}{6}$)的圖象的對稱軸方程是x=2kπ+$\frac{2π}{3}$,k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若集合M={1,2,3,4},集合N={2,4}則M∩N=( 。
A.B.{1,3,5}C.{2,4}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.過點(0,-2)的直線交拋物線y2=16x于A(x1,y1),B(x2,y2)兩點,且y12-y22=1,則△OAB(O為坐標(biāo)原點)的面積為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{8}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知f(x)=ax-lnx,a∈R.
(1)當(dāng)a=1時,求曲線f(x)在點(2,f(2))處的切線方程;
(2)是否存在實數(shù)a,使f(x)在區(qū)間(0,e]的最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案