【題目】已知圓C經(jīng)過點A(﹣2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點.
(1)求圓C的方程;
(2)若=﹣2,求實數(shù)k的值;
(3)過點(0,4)作動直線m交圓C于E,F(xiàn)兩點.試問:在以EF為直徑的所有圓中,是否存在這樣的圓P,使得圓P經(jīng)過點M(2,0)?若存在,求出圓P的方程;若不存在,請說明理由.
【答案】(1)x2+y2=4(2)0(3)存在圓P:5x2+5y2﹣16x﹣8y+12=0或x2+y2=4,使得圓P經(jīng)過點M(2,0)
【解析】
試題分析:(1)設(shè)圓心C(a,a),半徑為r.|AC|=|BC|=r,由此能求出圓C的方程;(2)由
,得∠POQ=120°,圓心C到直線l:kx-y+1=0的距離d=1,由此能求出k=0;(3)當(dāng)直線m的斜率不存在時,圓C也是滿足題意的圓;當(dāng)直線m的斜率存在時,設(shè)直線m:y=kx+4,由,得(1+k2)x2+8kx+12=0,由此利用根的判別式、韋達定理,結(jié)合已知條件能求出在以EF為直徑的所有圓中,存在圓P:5x2+5y2﹣16x﹣8y+12=0或x2+y2=4,使得圓P經(jīng)過點M(2,0).
試題解析:(1)設(shè)圓心C(a,a),半徑為r.
因為圓C經(jīng)過點A(﹣2,0),B(0,2),所以|AC|=|BC|=r,即,
解得a=0,r=2, 所以圓C的方程是x2+y2=4.…………………3分
(2)因為=2×2×cos<,>=﹣2,且與的夾角為∠POQ,
所以cos∠POQ=﹣,∠POQ=120°,
所以圓心C到直線l:kx﹣y+1=0的距離d=1,
又d=,所以k=0.…………………6分
(3)(ⅰ)當(dāng)直線m的斜率不存在時,
直線m經(jīng)過圓C的圓心C,
此時直線m與圓C的交點為E(0,2),F(xiàn)(0,﹣2),
EF即為圓C的直徑,而點M(2,0)在圓C上,
即圓C也是滿足題意的圓.…………………7分
(ⅱ)當(dāng)直線m的斜率存在時,設(shè)直線m:y=kx+4,
由,消去y整理,得(1+k2)x2+8kx+12=0,
由△=64k2﹣48(1+k2)>0,得或.
設(shè)E(x1,y1),F(xiàn)(x2,y2),
則有①…………………8分
由①得,②,③…………………9分
若存在以EF為直徑的圓P經(jīng)過點M(2,0),則ME⊥MF,
所以,
因此(x1﹣2)(x2﹣2)+y1y2=0,
即x1x2﹣2(x1+x2)+4+y1y2=0,…
則,
所以16k+32=0,k=﹣2,滿足題意.…………………10分
此時以EF為直徑的圓的方程為x2+y2﹣(x1+x2)x﹣(y1+y2)y+x1x2+y1y2=0,
即,
亦即5x2+5y2﹣16x﹣8y+12=0.…………………11分
綜上,在以EF為直徑的所有圓中,
存在圓P:5x2+5y2﹣16x﹣8y+12=0或x2+y2=4,使得圓P經(jīng)過點M(2,0).………12分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分別是AP,AD的中點.
求證:(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫度與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(Ⅰ)求選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;
(Ⅱ)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求關(guān)于的線性回歸方程;
(Ⅲ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(Ⅱ)中所得的線性回歸方程是否可靠?
(注:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(I)求直方圖中的值;
(II)求月平均用電量的眾數(shù)和中位數(shù);
(III)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列是首項為0的遞增數(shù)列,,滿足:對于任意的總有兩個不同的根,則的通項公式為_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩條直線l1:ax﹣by+4=0,l2:(a﹣1)x+y+b=0. 求滿足下列條件的a,b值.
(Ⅰ)l1⊥l2且l1過點(﹣3,﹣1);
(Ⅱ)l1∥l2且原點到這兩直線的距離相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項和為已知
(I)設(shè),證明數(shù)列是等比數(shù)列;
(II)求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機抽取個作為樣本,稱出它們的重量(單位:克),重量分組區(qū)間為,,,,由此得到樣本的重量頻率分布直方圖(如圖).
(Ⅰ)求的值,并根據(jù)樣本數(shù)據(jù),試估計盒子中小球重量的眾數(shù)與平均值;
(Ⅱ)從盒子中隨機抽取個小球,其中重量在內(nèi)的小球個數(shù)為,求的分布列和數(shù)學(xué)期望. (以直方圖中的頻率作為概率).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高二數(shù)學(xué)期中測試中,為了了解學(xué)生的考試情況,從中抽取了個學(xué)生的成績(滿分為100分)進行統(tǒng)計.按照[50,60), [60,70), [70,80), [80,90), [90,100]的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出得分在[50,60), [90,100]的數(shù)據(jù)).
(1)求樣本容量和頻率分布直方圖中的值;
(2)在選取的樣本中,從成績是80分以上(含80分)的同學(xué)中隨機抽取3名參加志愿者活動,所抽取的3名同學(xué)中至少有一名成績在[90,100]內(nèi)的概率。.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com