分析 由題意畫出圖形,由$\overrightarrow{AM}•\overrightarrow{AN}$=4,得x+y=2.再由|$\overrightarrow{MN}$|=$\sqrt{(x-2)^{2}+(y-2)^{2}}$的幾何意義,即線段x+y=2(0≤x≤2,0≤y≤2)上的動點到定點(2,2)的距離求解.
解答 解:如圖,以A為原點建立平面直角坐標(biāo)系,
設(shè)M(2,y),N(x,2)(0≤x≤2,0≤y≤2),
則$\overrightarrow{AM}•\overrightarrow{AN}$=2x+2y=4,即x+y=2.
∴|$\overrightarrow{MN}$|=$\sqrt{(x-2)^{2}+(y-2)^{2}}$.
可以看做線段x+y=2(0≤x≤2,0≤y≤2)上的動點到定點(2,2)的距離.
最小值為$\sqrt{2}$,最大值為2.
故答案為:$[\sqrt{2},2]$.
點評 本題考查了數(shù)量積運算性質(zhì),考查數(shù)形結(jié)合的解題思想方法與數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{3}{4}$,0) | B. | (-∞,-$\frac{3}{4}$) | C. | (-3,-$\frac{3}{4}$) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60 | B. | 75 | C. | 90 | D. | 105 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等腰直角三角形 | B. | 等邊三角形 | ||
C. | 直角非等腰三角形 | D. | 等腰非直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
井號I | 1 | 2 | 3 | 4 | 5 | 6 |
坐標(biāo)(x,y)(km) | (2,30) | (4,40) | (5,60) | (6,50) | (8,70) | (1,y) |
鉆探深度(km) | 2 | 4 | 5 | 6 | 8 | 10 |
出油量(L) | 40 | 70 | 110 | 90 | 160 | 205 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x-2y-1=0 | B. | 2x-y-2=0 | C. | x-$\sqrt{3}$y-1=0 | D. | $\sqrt{3}$x-y-$\sqrt{3}$=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com