1.在“二十四節(jié)氣入選非遺”宣傳活動中,從甲、乙、丙三位同學(xué)中任選兩人介紹一年中時令、氣候、物候等方面的變化規(guī)律,那么甲同學(xué)被選中的概率為( 。
A.1B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 先求出基本事件總數(shù)n=${C}_{3}^{2}$=3,再求出甲同學(xué)被選中包含聽基本事件個數(shù)m=${C}_{1}^{1}{C}_{2}^{1}$=2,由此能求出甲同學(xué)被選中的概率.

解答 解:在“二十四節(jié)氣入選非遺”宣傳活動中,從甲、乙、丙三位同學(xué)中任選兩人介紹一年中時令、氣候、物候等方面的變化規(guī)律,
基本事件總數(shù)n=${C}_{3}^{2}$=3,
甲同學(xué)被選中包含聽基本事件個數(shù)m=${C}_{1}^{1}{C}_{2}^{1}$=2,
∴甲同學(xué)被選中的概率p=$\frac{m}{n}$=$\frac{2}{3}$.
故選:D.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等可能事件概率計算公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖所示的程序框圖,輸出的值為( 。
A.$\frac{15}{16}$B.$\frac{15}{12}$C.$\frac{13}{8}$D.$\frac{13}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)$f(x)=3cos(ωx+\frac{π}{3})(ω>0)$和g(x)=2sin(2x+φ)+1的圖象的對稱軸完全相同,若$x∈[0,\frac{π}{3}]$,則f(x)的取值范圍是( 。
A.[-3,3]B.$[-\frac{3}{2},3]$C.$[-3,\frac{{3\sqrt{3}}}{2}]$D.$[-3,\frac{3}{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知向量$\vec a=(3,-1)$,$\vec b=(1,x)$,且$\vec a⊥\vec b$,那么x的值是( 。
A.-3B.3C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.當(dāng)x∈[0,2π]時,函數(shù)y=sinx的圖象與直線$y=-\frac{3}{4}$的公共點的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.甲乙兩名籃球運動員在4場比賽中的得分情況如圖所示.v1,v2分別表示甲、乙二人的平均得分,s1,s2分別表示甲、乙二人得分的方差,那么v1和v2,s1和s2的大小關(guān)系是( 。
A.v1>v2,s1>s2B.v1<v2,s1>s2C.v1>v2,s1<s2D.v1<v2,s1<s2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知點P(-2,2)在圓O:x2+y2=r2(r>0)上,直線l與圓O交于A,B兩點.
(1)r=2$\sqrt{2}$;
(2)如果△PAB為等腰三角形,底邊$AB=2\sqrt{6}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的前項n和為Sn,且3Sn=4an-4.又?jǐn)?shù)列{bn}滿足bn=log2a1+log2a2+…+log2an
(1)求數(shù)列{an}、{bn}的通項公式;
(2)若${T_n}=\frac{1}{b_1}+\frac{1}{b_2}+…+\frac{1}{b_n}$,求使得不等式$k\frac{{n•{a_n}}}{n+1}≥(2n-3){T_n}$恒成立的實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.從某項綜合能力測試中抽取100人的成績,統(tǒng)計如下,則這100個成績的平均數(shù)為( 。
分?jǐn)?shù)12345
人數(shù)2010401020
A.3B.2.5C.3.5D.2.75

查看答案和解析>>

同步練習(xí)冊答案