為了得到函數(shù)y=sin(
1
2
x-
π
3
)的圖象,只需將y=sin
1
2
x圖象上的每個點縱坐標(biāo)不變,橫坐標(biāo)( 。
A、向左平移
π
3
個單位
B、向右平移
π
3
個單位
C、向左平移
2
3
π
個單位
D、向右平移
2
3
π
個單位
考點:函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
解答: 解:∵函數(shù)y=sin(
1
2
x-
π
3
)=sin
1
2
(x-
3
),
∴為了得到函數(shù)y=sin(
1
2
x-
π
3
)的圖象,只需將y=sin
1
2
x圖象上的每個點向右平移
2
3
π
個單位即可,
故選:D.
點評:本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

“x∈{3,a}”是不等式2x2-5x-3≥0成立的一個充分不必要條件,則實數(shù)a的取值范圍是( 。
A、(3,+∞)
B、(-∞,-
1
2
)∪[3,+∞)
C、(-∞,-
1
2
]
D、(-∞,-
1
2
]∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果x>0,y>0,且2x+y=2,則
2
x
+
2
y
的最小值是( 。
A、4
B、3
C、2
2
D、3+2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
m
-
y2
n
=1(m>0,n>0)的離心率為2,有一個焦點與拋物線y2=16x的焦點重合,則mn的值為(  )
A、4B、12C、16D、48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足約束條件
x-y+2≤0
x≥1
x+y-7≤0
,則y-2x的取值范圍是( 。
A、[-
1
2
,4]
B、[-
1
2
,1]
C、[1,4]
D、[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y∈R且
x+y≤4
3x-y≥0
y≥0
,則存在θ∈R,使得(x-4)cosθ+ysinθ+
2
=0的概率為( 。
A、
π
24
B、
π
8
C、2-
π
24
D、1-
π
24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
16
-
y2
9
=1的焦點坐標(biāo)為( 。
A、(-
7
,0)、(
7
,0)
B、(0,-
7
)、(0,
7
C、(-5,0)、(5,0)
D、(0,-5)、(0,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,D,C,B在地平面同一直線上,DC=10m,從D,C兩地測得A點的仰角分別為30°和45°,則A點離地面的高AB等于( 。
A、10m
B、5
3
m
C、5(
3
-1)m
D、5(
3
+1)m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用歸納推理推斷,當(dāng)n是自然數(shù)時,
1
8
(n2-1)[1-(-1)n]的值( 。
A、一定是零
B、不一定是整數(shù)
C、一定是偶數(shù)
D、是整數(shù)但不一定是偶數(shù)

查看答案和解析>>

同步練習(xí)冊答案