設(shè)f(x)R上可導(dǎo),其導(dǎo)數(shù)為f′(x),給出下列四組條件:

pf(x)是奇函數(shù),qf′(x)是偶函數(shù);

pf(x)是以T為周期的函數(shù),qf′(x)是以T為周期的函數(shù);

pf(x)在區(qū)間(,+∞)上為增函數(shù),qf′(x)0(,+∞)恒成立;

pf(x)x0處取得極值,qf′(x0)0.

由以上條件中,能使pq成立的序號為 (  )

A①②③ B①②④ C①③④ D②③④

 

B

【解析】f(x)=-f(x),得-f′(x)=-f′(x)f′(x)f′(x).即f′(x)是偶函數(shù)正確.易知正確.不正確.根據(jù)f′(x0)0是可導(dǎo)函數(shù)f(x)xx0取得極值的必要不充分條件,∴④正確.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)6-1直線與圓練習(xí)卷(解析版) 題型:選擇題

如圖,在直角梯形ABCD中,ADAB,ABDC,ADDC1AB2,動點(diǎn)P在以點(diǎn)C為圓心,且與直線BD相切的圓上或圓內(nèi)移動,設(shè)λμ (λμR),則λμ的取值范圍是(  )

 

A(1,2) B(0,3) C[1,2] D[1,2)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)4-1等差數(shù)列與等比數(shù)列練習(xí)卷(解析版) 題型:選擇題

設(shè)等比數(shù)列{an}的公比q2,前n項(xiàng)和為Sn,若S41,則S8(  )

A17 B. C5 D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)3-1三角函數(shù)與三角恒等變換練習(xí)卷(解析版) 題型:填空題

已知函數(shù)f(x)sin ωxcos ωx(ω0),yf(x)的圖象與直線y2的兩個(gè)相鄰交點(diǎn)的距離等于π,則f(x)的單調(diào)遞增區(qū)間是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)2-2導(dǎo)數(shù)及其應(yīng)用練習(xí)卷(解析版) 題型:解答題

已知f(x)xln x,g(x)x3ax2x2.

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)f(x)在區(qū)間[tt2](t0)上的最小值;

(3)對一切的x(0,+∞),2f(x)g′(x)2恒成立,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)2-1函數(shù)的概念與基本初等函數(shù)練習(xí)卷(解析版) 題型:解答題

某養(yǎng)殖廠需定期購買飼料,已知該廠每天需要飼料200千克,每千克飼料的價(jià)格為1.8元,飼料的保管費(fèi)與其他費(fèi)用平均每千克每天0.03元,購買飼料每次支付運(yùn)費(fèi)300元.

(1)求該廠多少天購買一次飼料才能使平均每天支付的總費(fèi)用最少;

(2)若提供飼料的公司規(guī)定,當(dāng)一次購買飼料不少于5噸時(shí),其價(jià)格可享受八五折優(yōu)惠(即原價(jià)的85%).問:該廠是否應(yīng)考慮利用此優(yōu)惠條件?請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)2-1函數(shù)的概念與基本初等函數(shù)練習(xí)卷(解析版) 題型:選擇題

已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x0時(shí),f(x)2x3,則f(2)=( )

A1 B.-1 C. D.-

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-5練習(xí)卷(解析版) 題型:填空題

若關(guān)于實(shí)數(shù)x的不等式|x5||x3|<a無解,則實(shí)數(shù)a的取值范圍是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-7-3練習(xí)卷(解析版) 題型:選擇題

通過隨機(jī)詢問110名性別不同的人,對過馬路是愿意走斑馬線還是愿意走人行天橋進(jìn)行抽樣調(diào)查,得到如下的列聯(lián)表:

 

總計(jì)

走天橋

40

20

60

走斑馬線

20

30

50

總計(jì)

60

50

110

K2,得K2≈7.8.

附表:

P(K2k0)

0.050

0.010

0.001

k0

3.841

6.635

10.828

參照附表,得到的正確結(jié)論 (  )

A.有99%以上的把握認(rèn)為選擇過馬路的方式與性別有關(guān)

B.有99%以上的把握認(rèn)為選擇過馬路的方式與性別無關(guān)

C.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為選擇過馬路的方式與性別有關(guān)

D.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為選擇過馬路的方式與性別無關(guān)

 

查看答案和解析>>

同步練習(xí)冊答案