1.已知命題p:?x∈N*,2x>x2,則¬p是( 。
A.?x∈N*,2x>x2B.?x∈N*,2x≤x2C.?x∈N*,2x≤x2D.?x∈N*,2x<x2

分析 欲寫出命題的否定,必須同時改變兩個地方:①:“?”;②:“>”即可,據(jù)此分析選項可得答案.

解答 解:命題p:?x∈N*,2x>x2,則¬p是?x∈N*,2x≤x2,
故選:C.

點評 這類問題的常見錯誤是沒有把全稱量詞改為存在量詞,或者對于“>”的否定用“<”了.這里就有注意量詞的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特稱命題的否定是全稱命題,“存在”對應“任意”.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.若cos(π-α)=-$\frac{\sqrt{3}}{3}$,則cosα=( 。
A.-$\frac{\sqrt{3}}{3}$B.-$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.以x軸正半軸為極軸建立極坐標系,已知圓C的圓心$C(\sqrt{2},\frac{π}{4})$,半徑r=$\sqrt{3}$.直線l的極坐標方程為θ=$\frac{π}{4}$(ρ∈R).求圓C和直線l的直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.有一拋物線形拱橋,正常情況下,拱頂離水面2m,水面寬4m,干旱的情況下,水面下降1m,此時水面寬為$2\sqrt{6}$m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點分別為F1,F(xiàn)2,P為雙曲線C上一點,Q為雙曲線C漸近線上一點,P,Q均位于第一象限,且$\widehat{QP}$=$\widehat{P{F}_{2}}$,$\widehat{Q{F}_{1}}$•$\widehat{Q{F}_{2}}$=0,則雙曲線C的離心率為( 。
A.$\sqrt{5}$-1B.$\sqrt{3}$C.$\sqrt{3}$+1D.$\sqrt{5}$+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如圖,用小刀切一塊長方體橡皮的一個角,在棱AD、AA1、AB上的截點分別是E、F、G,則截面△EFG( 。
A.一定是等邊三角形B.一定是鈍角三角形
C.一定是銳角三角形D.一定是直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=x2-4x-4在閉區(qū)間[t,t+1](t∈R)上的最小值記為g(t).
(1)試寫出函數(shù)g(t)的解析式;
(2)求函數(shù)g(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若函數(shù)f(x)=a(x2+$\frac{2}{x}$)-lnx(a>0)有唯一零點x0,且m<x0<n(m,n為相鄰整數(shù)),其中自然對數(shù)e=2.71828…,則m+n的值為( 。
A.1B.3C.5D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.在平面直角坐標系xOy中,點A(0,3),直線l:y=2x-4,設圓C的半徑為1,圓心在l上,若圓C上存在點M,使|MA|=2|MO|,則圓心C的橫坐標的取值范圍為(  )
A.$[{0,\frac{12}{5}}]$B.[0,1]C.$[{1,\frac{12}{5}}]$D.$({0,\frac{12}{5}})$

查看答案和解析>>

同步練習冊答案