(2011•武昌區(qū)模擬)設(shè)函數(shù)f(x)=x2+bln(x+1).
(Ⅰ)若對(duì)定義域內(nèi)的任意x,都有f(x)≥f(1)成立,求實(shí)數(shù)b的值;
(Ⅱ)若函數(shù)f(x)的定義域上是單調(diào)函數(shù),求實(shí)數(shù)b的取值范圍;
(Ⅲ)若b=-1,證明對(duì)任意的正整數(shù)n,不等式
n
k=i
f(
1
k
)<1+
1
23
+
1
33
+…+
1
n3
成立.
分析:(Ⅰ)由x+1>0,得f(x)的定義域?yàn)椋?1,+∞).因?yàn)閷?duì)x∈(-1,+∞),都有f(x)≥f(1),所以f(1)是函數(shù)f(x)的最小值,故有f′(1)=0由此能求出b.
(Ⅱ)由f(x)=2x+
b
x+1
,函數(shù)f(x)在定義域上是單調(diào)函數(shù),知f′(x)≥0或f′(x)≤0在(_1,+∞)上恒成立.由此能求出實(shí)數(shù)b的取值范圍.
(Ⅲ)當(dāng)b=1時(shí),函數(shù)f(x)=x2-ln(x+1).令h(x)=f(x)-x3=-x3+x2-ln(x+1),則h(x)=-3x2+2x-
1
x+1
.由此入手能夠證明
n
k=1
f(
1
k
) <1+
1
23
+
1
3 3
+…+
1
n3
解答:解:(Ⅰ)由x+1>0,得x>-1.
∴f(x)的定義域?yàn)椋?1,+∞).…(1分)
因?yàn)閷?duì)x∈(-1,+∞),都有f(x)≥f(1),
∴f(1)是函數(shù)f(x)的最小值,故有f′(1)=0.…(2分)
f(x)=2x+
b
x+1
,
∴2+
b
2
=0,解得b=-4.      …(3分)
經(jīng)檢驗(yàn),b=-4時(shí),f(x)在(-1,1)上單調(diào)減,在(1,+∞)上單調(diào)增.
f(1)為最小值.故得證. …(4分)
(Ⅱ)∵f(x)=2x+
b
x+1
=
2x2+2x+b
x+1
,
又函數(shù)f(x)在定義域上是單調(diào)函數(shù),
∴f′(x)≥0或f′(x)≤0在(_1,+∞)上恒成立.…(6分)
若f′(x)≥0,則2x+
b
x+1
≥0在(-1,+∞)上恒成立,
即b≥-2x2-2x=-2(x+
1
2
2+
1
2
恒成立,由此得b
1
2
;…(8分)
若f′(x)≤0,則2x+
b
x+1
≤0在(-1,+∞)上恒成立,
即b≤-2x2-2x=-2(x+
1
2
2+
1
2
恒成立.
-2(x+
1
2
)2+
1
2
在(-1,+∞)上沒有最小值,
∴不存在實(shí)數(shù)b使f′(x)≤0恒成立.
綜上所述,實(shí)數(shù)b的取值范圍是[
1
2
,+∞
).…(10分)
(Ⅲ)當(dāng)b=1時(shí),函數(shù)f(x)=x2-ln(x+1).
令h(x)=f(x)-x3=-x3+x2-ln(x+1),
h(x)=-3x2+2x-
1
x+1
=-
3x3+(x-1)2
x+1

當(dāng)x∈(0,+∞)時(shí),h′(x)<0,
所以函數(shù)h(x)在(0,+∞)上單調(diào)遞減.
又h(0)=0,∴當(dāng)x∈[0,+∞)時(shí),恒有h(x)<h(0)=0,
即x2-ln(x+1)<x3恒成立.
故當(dāng)x∈(0,+∞)時(shí),有f(x)<x3.…(12分)
∵k∈N*,∴
1
k
∈(0,+∞)

x=
1
k
,則有f(
1
k
) <
1
k3

n
k=1
f(
1
k
) <1+
1
23
+
1
3 3
+…+
1
n3

所以結(jié)論成立. …(14分)
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)最值的應(yīng)用,綜合性質(zhì)強(qiáng),難度大,計(jì)算繁瑣,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•武昌區(qū)模擬)已知定義域?yàn)椋?,+∞)的函數(shù)f(x)滿足:(1)對(duì)任意x∈(0,+∞),恒有f(3x)=3f(x)成立;(2)當(dāng)x∈(1,3]時(shí),f(x)=3-x.給出如下結(jié)論:
①對(duì)任意m∈Z,有f(3m)=0;
②函數(shù)f(x)的值域?yàn)閇0,+∞);
③存在n∈Z,使得f(3n+1)=9.
其中所有正確結(jié)論的序號(hào)是
①②
①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•武昌區(qū)模擬)已知點(diǎn)P(x,y)與點(diǎn)A(-
2
,0),B(
2
,0)
連線的斜率之積為1,點(diǎn)C的坐標(biāo)為(1,0).
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)過點(diǎn)Q(2,0)的直線與點(diǎn)P的軌跡交于E、F兩點(diǎn),求證
CE
CF
為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•武昌區(qū)模擬)設(shè)集合M={y|y=(
1
2
)
x
,x≥0},N={y|y=lg x,0<x≤1}
,則集合M∪N=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•武昌區(qū)模擬)過三棱柱任意兩個(gè)頂點(diǎn)作直線,在所有這些直線中任取其中兩條,則它們成為異面直線的概率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•武昌區(qū)模擬)已知一次函數(shù)f(x)=kx+b(k,b∈R),若-1<f(1)<4,2<f(-1)<3,則2f(-
3
2
)
的取值范圍是
(3,
17
2
(3,
17
2

查看答案和解析>>

同步練習(xí)冊(cè)答案