分析 (1)求得F(x)的導(dǎo)數(shù),由導(dǎo)數(shù)大于0,可得增區(qū)間;導(dǎo)數(shù)小于0,可得減區(qū)間,注意定義域;
(2)設(shè)切點(diǎn)坐標(biāo)為(x0,lnx0-$\frac{1}{{x}_{0}}$),求得切線的斜率,由已知切線方程可得a,b關(guān)于x0的關(guān)系式,構(gòu)造函數(shù),求出導(dǎo)數(shù)和單調(diào)區(qū)間,即可得到所求最小值;
(3)方法一、令$G(x)=lnx-\frac{1}{x}-2x+3$,結(jié)合(1)可得$lnx-\frac{1}{x}≤2x-3$.再由ex≥x+1,可得$2{e^{x-\frac{5}{2}}}≥2[{({x-\frac{5}{2}})+1}]$=2x-3(x>0),即可得證;
方法二、令$P(x)=2{e^{x-\frac{5}{2}}}-lnx+\frac{1}{x}$,求出導(dǎo)數(shù),求出單調(diào)區(qū)間,運(yùn)用零點(diǎn)存在定理,求得極值點(diǎn)的范圍,運(yùn)用單調(diào)性,即可得證.
解答 解:(1)a=2時,F(xiàn)(x)=f(x)-g(x)=$lnx-\frac{1}{x}-2x-b$,
$F'(x)=\frac{1}{x}+\frac{1}{x^2}-2({x>0})$,$F'(x)=\frac{{x+1-2{x^2}}}{x^2}=\frac{{({1-x})({1+2x})}}{x^2}$,
解F'(x)>0得0<x<1,解F'(x)<0得x>1,
∴F(x)的單調(diào)增區(qū)間為(0,1),單調(diào)減區(qū)間為(1,+∞);
(2)設(shè)切點(diǎn)坐標(biāo)為(x0,lnx0-$\frac{1}{{x}_{0}}$),$f'(x)=\frac{1}{x}+\frac{1}{x^2}$,
切線斜率$a=f'({x_0})=\frac{1}{x_0}+\frac{1}{{{x_0}^2}}$,又$ln{x_0}-\frac{1}{x_0}=a{x_0}+b$,
∴$b=ln{x_0}-\frac{2}{x_0}-1$,∴$a+b=ln{x_0}+\frac{1}{{{x_0}^2}}-\frac{1}{x_0}-1$,
令$h(x)=lnx+\frac{1}{x^2}-\frac{1}{x}-1({x>0})$,
$h'(x)=\frac{1}{x}-\frac{2}{x^3}+\frac{1}{x^2}$=$\frac{{{x^2}+x-2}}{x^3}$=$\frac{{({x+2})({x-1})}}{x^3}$,
解h'(x)<0得0<x<1,解h'(x)>0得x>1,
∴h(x)在(0,1)上遞減,在(1,+∞)上遞增.
∴h(x)≥h(1)=-1,∴a+b的最小值為-1;
(3)證法一:令$G(x)=lnx-\frac{1}{x}-2x+3$,
由(1)知(G(x))max=G(1)=0,∴$lnx-\frac{1}{x}≤2x-3$.
又由y=ex-x-1,y′=ex-1,可得函數(shù)y在(0,+∞)遞增,在(-∞,0)遞減,
即有函數(shù)y有最小值0,即ex≥x+1,
∴$2{e^{x-\frac{5}{2}}}≥2[{({x-\frac{5}{2}})+1}]$=2x-3(x>0)
∴$2{e^{x-\frac{5}{2}}}≥2x-3≥lnx-\frac{1}{x}$,(兩個等號不會同時成立)
∴$2{e^{x-\frac{5}{2}}}-lnx+\frac{1}{x}>0$.
法二:令$P(x)=2{e^{x-\frac{5}{2}}}-lnx+\frac{1}{x}$,$P'(x)=2{e^{x-\frac{5}{2}}}-\frac{1}{x}-\frac{1}{x^2}$
顯然P'(x)在(0,+∞)上遞增,P'(1)<0,P'(2)>0
∴P'(x)=0在(0,+∞)上有唯一實(shí)根x*,且x*∈(1,2),
$2{e^{x*-\frac{5}{2}}}=\frac{1}{x^*}+$$\frac{1}{{{{({x^*})}^2}}}$,
∴P(x)在(0,x*)上遞減,在(x*,+∞)上遞增,
∴P(x)≥P(x*)=$2{e^{{x^*}-\frac{5}{2}}}-ln{x^*}+\frac{1}{x^*}$
=$\frac{2}{x^*}+\frac{1}{{{{({x^*})}^2}}}-ln{x^*}$$>\frac{2}{2}+\frac{1}{4}-ln2>0$
∴$2{e^{x-\frac{5}{2}}}-lnx+\frac{1}{x}>0$.
點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率和單調(diào)區(qū)間、極值和最值,考查不等式的證明,注意運(yùn)用構(gòu)造法和函數(shù)的單調(diào)性,以及轉(zhuǎn)化思想的運(yùn)用,考查變形能力及函數(shù)零點(diǎn)存在定理的運(yùn)用,屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-\frac{5}{2},-2]$ | B. | $[-\frac{5}{2},-2]$ | C. | [-2,0) | D. | [-2,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | 2i | D. | -2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com