13.已知函數(shù)f(x)=3sin(3x+φ),x∈[0,π],則y=f(x)的圖象與直線y=2的交點個數(shù)最多有(  )
A.2個B.3個C.4個D.5個

分析 令f(x)=2,得sin(3x+φ)=$\frac{2}{3}$,根據(jù)x∈[0,π],求出3x+φ的取值范圍,根據(jù)正弦函數(shù)的圖象與性質(zhì),可得出函數(shù)y=f(x)的圖象與直線y=2的交點最多有4個.

解答 解:令f(x)=3sin(3x+φ)=2,
得sin(3x+φ)=$\frac{2}{3}$∈(-1,1),
又x∈[0,π],∴3x∈[0,3π],
∴3x+φ∈[φ,3π+φ];
根據(jù)正弦函數(shù)的圖象與性質(zhì),可得
該方程在正弦函數(shù)一個半周期上最多有4個解,
即函數(shù)y=f(x)的圖象與直線y=2的交點最多有4個.
故選:C.

點評 本題主要考查了函數(shù)圖象交點個數(shù)的判斷問題,利用函數(shù)和方程之間的關(guān)系,進行求解即可.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知偶函數(shù)f(x)的定義域為R,且在(-∞,0)上是增函數(shù),則f(-$\frac{3}{4}$)與f(a2-a+1)的大小關(guān)系為( 。
A.f(-$\frac{3}{4}$)<f(a2-a+1)B.f(-$\frac{3}{4}$)>f(a2-a+1)C.f(-$\frac{3}{4}$)≤f(a2-a+1)D.f(-$\frac{3}{4}$)≥f(a2-a+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=xlnx+$\frac{a}{x}$(a∈R).
(1)當a=0時,求曲線y=f(x)在(1,f(1))處的切線方程;
(2)求證:當a≥1,f(x)≥1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx-$\frac{1}{x}$,g(x)=ax+b.
(1)若a=2,F(xiàn)(x)=f(x)-g(x),求F(x)的單凋區(qū)間;
(2)若函數(shù)g(x)=ax+b是函數(shù)f(x)=lnx-$\frac{1}{x}$的圖象的切線,求a+b的最小值;
(3)求證:$2{e^{x-\frac{5}{2}}}-lnx+\frac{1}{x}$>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知a為實數(shù),設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x-{2}^{a},x<2}\\{lo{g}_{2}(x-2),x≥2}\end{array}\right.$,則f(2a+2)的值為(  )
A.2aB.aC.2D.a或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知a>0,b>0,且滿足3a+b=a2+ab,則2a+b的最小值為3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)f(x+1)是偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于( 。
A.直線x=1對稱B.直線x=-1對稱C.點(1,0)對稱D.點(-1,0)對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.某長方體的三視圖如圖,長度為$\sqrt{10}$的體對角線在主視圖中的投影長度為$\sqrt{6}$,在左視圖中的投影長度為$\sqrt{5}$,則該長方體的體積為( 。
A.3$\sqrt{5}$+2B.2$\sqrt{5}$C.6$\sqrt{5}$+4D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.將圖形C上的動點的坐標所組成的向量$(\begin{array}{l}{x}\\{y}\end{array})$左乘矩陣$(\begin{array}{l}{0}&{1}\\{1}&{0}\end{array})$,得到新的動點所構(gòu)成的圖形與圖形C的位置關(guān)系為關(guān)于直線y=x對稱.

查看答案和解析>>

同步練習冊答案