數(shù)列{an}的前n項(xiàng)和記為Sn,a1=1,an+1=2Sn+1(n≥1,n∈N*),則數(shù)列{an}的通項(xiàng)公式是_______.
an=3n-1
【思路點(diǎn)撥】根據(jù)an和Sn的關(guān)系轉(zhuǎn)換an+1=2Sn+1(n≥1)為an+1與an的關(guān)系或者Sn+1與Sn的關(guān)系.
解:方法一:由an+1=2Sn+1可得an=2Sn-1+1(n≥2),兩式相減得an+1-an=2an,an+1=3an(n≥2).
又a2=2S1+1=3,
∴a2=3a1,故{an}是首項(xiàng)為1,公比為3的等比數(shù)列,
∴an=3n-1.
方法二:由于an+1=Sn+1-Sn,
an+1=2Sn+1,
所以Sn+1-Sn=2Sn+1,Sn+1=3Sn+1,
把這個(gè)關(guān)系化為Sn+1+=3(Sn+),
即得數(shù)列{Sn+}為首項(xiàng)是S1+=,
公比是3的等比數(shù)列,故Sn+=×3n-1=×3n,
故Sn=×3n-.
所以,當(dāng)n≥2時(shí),an=Sn-Sn-1=3n-1,
由n=1時(shí)a1=1也適合這個(gè)公式,知所求的數(shù)列{an}的通項(xiàng)公式是an=3n-1.
【方法技巧】an和Sn關(guān)系的應(yīng)用技巧
在根據(jù)數(shù)列的通項(xiàng)an與前n項(xiàng)和的關(guān)系求解數(shù)列的通項(xiàng)公式時(shí),要考慮兩個(gè)方面,一個(gè)是根據(jù)Sn+1-Sn=an+1把數(shù)列中的和轉(zhuǎn)化為數(shù)列的通項(xiàng)之間的關(guān)系;一個(gè)是根據(jù)an+1=Sn+1-Sn把數(shù)列中的通項(xiàng)轉(zhuǎn)化為前n項(xiàng)和的關(guān)系,先求Sn再求an.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等比數(shù)列{an}中,a4a8=-2,則a6(a2+2a6a10)的值為(  )
A.4B.6C.8D.-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等比數(shù)列{an}的公比為q,記bn=am(n-1)+1+am(n-1)+2+…+am(n-1)+m,cn=am(n-1)+1·am(n-1)+2·…·am(n-1)+m(m,n∈N*),則以下結(jié)論一定正確的是(  )
A.?dāng)?shù)列{bn}為等差數(shù)列,公差為qm
B.?dāng)?shù)列{bn}為等比數(shù)列,公比為q2m
C.?dāng)?shù)列{cn}為等比數(shù)列,公比為qm2
D.?dāng)?shù)列{cn}為等比數(shù)列,公比為qmm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知實(shí)數(shù)a,b,cd成等比數(shù)列,且函數(shù)y=ln(x+2)-x,當(dāng)xb時(shí)取到極大值c,則ad等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若等比數(shù)列{an}滿足a2a4=20,a3a5=40,則數(shù)列{an}的前n項(xiàng)和Sn=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

{an}為等比數(shù)列,a2=6,a5=162,則{an}的通項(xiàng)公式an=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等比數(shù)列{an}的公比q=2,其前4項(xiàng)和S4=60,則a2等于(  )
A.8B.6C.-8D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正項(xiàng)等比數(shù)列{an}中,已知a3·a5=64,則a1+a7的最小值為(  )
A.64B.32C.16D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知等比數(shù)列{an}的首項(xiàng)為2,公比為2,則=   .

查看答案和解析>>

同步練習(xí)冊答案