精英家教網 > 高中數學 > 題目詳情
已知c>0,設命題p:不等式x2-2cx+c≥0解集為R;命題q:方程x2+2x+2c=0沒有實根,如果命題p或q為真命題,p且q為假命題,求c的取值范圍.
【答案】分析:由題意可得pq為真時的c的取值范圍,再由p或q為真命題,p且q為假命題,可得命題p和命題q一個為真,另一個為假.由集合的運算可得答案.
解答:解:若命題p真,則有△=(-2c)2-4×1×c≤0,解得0<c≤1;
若命題q真,則有△′=22-4×1×2c<0,解得c
根據p或q為真命題,p且q為假命題,可得命題p和命題q一個為真,另一個為假.
當命題p為真、命題q為假時,可得0<c≤
當命題p為假、命題q為真時,c>1.
綜上可得,c的取值范圍為:0<c≤,或c>1.
點評:本題為命題真假的問題,涉及二次函數,二次方程,二次不等式,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知c>0,設命題p:函數y=cx為減函數;命題q:當x∈[
1
2
,2]時,函數f(x)=x+
1
x
1
c
 恒成立,如果p∨q為真命題,p∧q為假命題,求c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知c>0,設命題P:函數y=-c-x為減函數;命題q:當x∈[
1
2
,3]時,函數f(x)=x+
1
x
1
c
恒成立.如果p或q為真命題,p且q為假命題,求c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知 c>0,設命題p:指數函數y=-(2c-1)x在實數集R上為增函數,命題q:不等式x+(x-2c)2>1在R上恒成立.若命題p或q是真命題,p且q是假命題,求c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知c>0.設命題P:函數y=cx在R上單調遞減;Q:函數y=x2-4cx+1在[1,+∞)上恒為增函數.若P或Q為真,P且Q為假,求c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知c>0,設命題p:函數y=(3c-1)x在R上單調遞減;命題q:曲線y=4x2+4cx+c2-2c+1與x軸交于不同兩點.若命題P或q為真,¬q為真,求c的取值范圍.

查看答案和解析>>

同步練習冊答案