已知二次函數(shù)在區(qū)間 上有最大值,最小值.
(1)求函數(shù)的解析式;
(2)設(shè).若在時恒成立,求的取值范圍.
(1);(2).
解析試題分析:(1)根據(jù)二次函數(shù)的最值建立方程組,即可求函數(shù)的解析式;(2)將在時恒成立進行轉(zhuǎn)化為求函數(shù)最值,即可求出的取值范圍.求最值時考慮利用換元當(dāng)將函數(shù)轉(zhuǎn)化為求二次函數(shù)在一個閉區(qū)間上的最值.
試題解析:(1)∵,
∴函數(shù)的圖象的對稱軸方程為.
依題意得 ,即,解得 ,
∴.
(2)∵,∴.
∵在時恒成立,即在時恒成立,
∴在時恒成立,
只需 .
令,由得
設(shè),
∵,
∴函數(shù)的圖象的對稱軸方程為.
當(dāng)時,取得最大值.
∴ ∴的取值范圍為.
考點:1、函數(shù)恒成立問題;2、函數(shù)解析式的求解及常用方法;3、二次函數(shù)在閉區(qū)間上的最值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若不等式有解,求實數(shù)m的取值菹圍;
(3)證明:當(dāng)a=0時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)的定義域為,若存在常數(shù),使得對一切實數(shù)均成立,則稱為“圓錐托底型”函數(shù).
(1)判斷函數(shù),是否為“圓錐托底型”函數(shù)?并說明理由.
(2)若是“圓錐托底型” 函數(shù),求出的最大值.
(3)問實數(shù)、滿足什么條件,是“圓錐托底型” 函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)a≥-2時,求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)設(shè)h(x)=f(x)+g(x),且h(x)有兩個極值點為,其中,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
求下列各題中的函數(shù)f(x)的解析式.
(1) 已知f(+2)=x+4,求f(x);
(2) 已知f=lgx,求f(x);
(3) 已知函數(shù)y=f(x)滿足2f(x)+f=2x,x∈R且x≠0,求f(x);
(4) 已知f(x)是二次函數(shù),且滿足f(0)=1,f(x+1)=f(x)+2x,求f(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)對任意實數(shù)恒有且當(dāng)時,有且.
(1)判斷的奇偶性;
(2)求在區(qū)間上的最大值;
(3)解關(guān)于的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域為R的函數(shù)f(x)=是奇函數(shù).
(1)求a,b的值.
(2)用定義證明f(x)在(-∞,+∞)上為減函數(shù).
(3)若對于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com