【題目】如圖,在三棱柱中,側(cè)棱底面,,,,分別為棱,,的中點(diǎn).
(1)求證:;
(2)若,,求三棱錐的體積;
(3)判斷直線與平面的位置關(guān)系,并說明理由.
【答案】(1)證明見解析 (2) (3)平面AEF,理由見解析
【解析】
(1)首先證出,,根據(jù)線面垂直的判定定理證出平面,再由線面垂直的定義即證.
(2)證出為三棱錐的高,利用三棱錐的體積公式以及等體法即可求解.
(3)利用線面平行的判定定理即可證出直線與平面的位置關(guān)系.
證明:(1)
平面平面
,
,點(diǎn)為的中點(diǎn),
又,面
平面
又平面
,即
(2),故,
三棱柱中,側(cè)棱底面,
平面
平面,
又平面
即為三棱錐的高
(3)平面,證明如下:
連接,記與相交于點(diǎn) ,連接
分別為和的中點(diǎn),
故
四邊形為平行四邊形
為中點(diǎn),
又為中點(diǎn),
平面,平面,
平面
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD中,AB=10,BC=6,將矩形沿對角線BD把△ABD折起,使A移到A1點(diǎn),且A1在平面BCD上的射影O恰在CD上,即A1O⊥平面DBC.
(Ⅰ)求證:BC⊥A1D;
(Ⅱ)求證:平面A1BC⊥平面A1BD;
(Ⅲ)求點(diǎn)C到平面A1BD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐中,,,,點(diǎn)在上,且.
(1)證明:平面;
(2)求以為棱,與為面的二面角的大小
(3)在棱上是否存在一點(diǎn),使平面?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是正方形.點(diǎn)是棱的中點(diǎn),平面與棱交于點(diǎn).
(1)求證:;
(2)若,且平面平面,試證明平面;
(3)在(2)的條件下,線段上是否存在點(diǎn),使得平面?(直接給出結(jié)論,不需要說明理由)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對年銷售量(單位:)和年利潤(單位:千元)的影響,對近8年的宣傳費(fèi)和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中,
附:對于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計分別為:
(1)根據(jù)散點(diǎn)圖判斷,與,哪一個適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸方程類型(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)已知這種產(chǎn)品的年利潤與的關(guān)系為,根據(jù)(2)的結(jié)果回答:當(dāng)年宣傳費(fèi)時,年銷售量及年利潤的預(yù)報值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),求證:當(dāng)時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高中生在被問及“家,朋友聚集的地方,個人空間”三個場所中“感到最幸福的場所在哪里?”這個問題時,從中國某城市的高中生中,隨機(jī)抽取了55人,從美國某城市的高中生中隨機(jī)抽取了45人進(jìn)行答題.中國高中生答題情況是:選擇家的占、朋友聚集的地方占、個人空間占.美國高中生答題情況是:朋友聚集的地方占、家占、個人空間占.如下表:
在家里最幸福 | 在其它場所幸福 | 合計 | |
中國高中生 | |||
美國高中生 | |||
合計 |
(Ⅰ)請將列聯(lián)表補(bǔ)充完整;試判斷能否有的把握認(rèn)為“戀家”與否與國別有關(guān);
(Ⅱ)從被調(diào)查的不“戀家”的美國學(xué)生中,用分層抽樣的方法選出4人接受進(jìn)一步調(diào)查,再從4人中隨機(jī)抽取2人到中國交流學(xué)習(xí),求2人中含有在“個人空間”感到幸福的學(xué)生的概率.
附:,其中.
0.050 | 0.025 | 0.010 | 0.001 | |
3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的零點(diǎn);
(2)若關(guān)于的方程()恰有個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種計算機(jī)病毒是通過電子郵件進(jìn)行傳播的,下表是某公司前5天監(jiān)測到的數(shù)據(jù):
第天 | 1 | 2 | 3 | 4 | 5 |
被感染的計算機(jī)數(shù)量(臺) | 10 | 20 | 39 | 81 | 160 |
則下列函數(shù)模型中,能較好地反映計算機(jī)在第天被感染的數(shù)量與之間的關(guān)系的是
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com