試題分析:(1)當x<1時,f(x)=-x
3+x
2+bx+c,則f'(x)=-3x
2+2x+b.依題意得:
,由此能求出實數b,c的值.(2)由
知,當-1≤x<1時,
,令f'(x)=0得
,當x變化時,f'(x),f(x)的變化情況列表知f(x)在[-1,1)上的最大值為2.當1≤x≤2時,f(x)=alnx.當a≤0時,f(x)≤0,f(x)最大值為0;當a>0時,f(x)在[1,2]上單調遞增.當aln2≤2時,f(x)在區(qū)間[-1,2]上的最大值為2;當aln2>2時,f(x)在區(qū)間[-1,2]上的最大值為aln2.(3)假設曲線y=f(x)上存在兩點P、Q滿足題設要求,則點P、Q只能在y軸兩側.設P(t,f(t))(t>0),則Q(-t,t
3+t
2),顯然t≠1.由此入手能得到對任意給定的正實數a,曲線y=f(x)上存在兩點P、Q,使得△POQ是以O為直角頂點的直角三角形,且此三角形斜邊中點在y軸上.
解:(1)當
時,
,則
。
依題意得:
,即
解得
(2)由(1)知,
①當
時,
,
令
得
或
當
變化時,
的變化情況如下表:
又
,
,
!
在
上的最大值為2.
②當
時,
.當
時,
,
最大值為0;
當
時,
在
上單調遞增。∴
在
最大值為
。
綜上,當
時,即
時,
在區(qū)間
上的最大值為2;
當
時,即
時,
在區(qū)間
上的最大值為
。
(3)假設曲線
上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側。
不妨設
,則
,顯然
∵
是以O為直角頂點的直角三角形,∴
即
(*)
若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
若
,則
代入(*)式得:
即
,而此方程無解,因此
。此時
,
代入(*)式得:
即
(**)
令
,則
∴
在
上單調遞增, ∵
∴
,∴
的取值范圍是
。
∴對于
,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數
,曲線
上存在兩點P、Q,使得
是以O為直角頂點的直角
三角形,且此三角形斜邊中點在
軸上。