精英家教網 > 高中數學 > 題目詳情
已知函數的圖象過坐標原點O,且在點處的切線的斜率是.
(1)求實數的值;
(2)求在區(qū)間上的最大值;
(3)對任意給定的正實數,曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.
(1);( Ⅱ)詳見解析;( Ⅲ)詳見解析.

試題分析:(1)當x<1時,f(x)=-x3+x2+bx+c,則f'(x)=-3x2+2x+b.依題意得:,由此能求出實數b,c的值.(2)由知,當-1≤x<1時,,令f'(x)=0得,當x變化時,f'(x),f(x)的變化情況列表知f(x)在[-1,1)上的最大值為2.當1≤x≤2時,f(x)=alnx.當a≤0時,f(x)≤0,f(x)最大值為0;當a>0時,f(x)在[1,2]上單調遞增.當aln2≤2時,f(x)在區(qū)間[-1,2]上的最大值為2;當aln2>2時,f(x)在區(qū)間[-1,2]上的最大值為aln2.(3)假設曲線y=f(x)上存在兩點P、Q滿足題設要求,則點P、Q只能在y軸兩側.設P(t,f(t))(t>0),則Q(-t,t3+t2),顯然t≠1.由此入手能得到對任意給定的正實數a,曲線y=f(x)上存在兩點P、Q,使得△POQ是以O為直角頂點的直角三角形,且此三角形斜邊中點在y軸上.
解:(1)當時,,則。
依題意得:,即   解得
(2)由(1)知,
①當時,,

變化時,的變化情況如下表:


0





0
+
0


單調遞減
極小值
單調遞增
極大值
單調遞減
 
,!上的最大值為2.
②當時, .當時, ,最大值為0;
時,上單調遞增。∴最大值為。
綜上,當時,即時,在區(qū)間上的最大值為2;
時,即時,在區(qū)間上的最大值為
(3)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。
不妨設,則,顯然
是以O為直角頂點的直角三角形,∴
   (*)
若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
,則代入(*)式得:
,而此方程無解,因此。此時,
代入(*)式得:    即  (**)
 ,則
上單調遞增, ∵    ∴,∴的取值范圍是。
∴對于,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數,曲線上存在兩點P、Q,使得是以O為直角頂點的直角
三角形,且此三角形斜邊中點在軸上。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

設函數f(x)=ax-,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0.
(1)求f(x)的解析式;
(2)證明:曲線y=f(x)上任一點處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數.
(1)當時,求函數在區(qū)間內的最大值;
(2)當時,方程有唯一實數解,求正數的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知A、B、C是直線l上不同的三點,O是l外一點,向量滿足:記y=f(x).
(1)求函數y=f(x)的解析式:
(2)若對任意不等式恒成立,求實數a的取值范圍:
(3)若關于x的方程f(x)=2x+b在(0,1]上恰有兩個不同的實根,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(1)設函數,當時,討論的單調性;
(2)若函數處取得極小值,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知函數在區(qū)間內單調,則的最大值為__________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)求函數的最大值;
(2)若的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數,其中.
(1)是否存在實數,使得函數上單調遞增?若存在,求出的值或取值范圍;否則,請說明理由.
(2)若a<0,且函數y=f(x)的極小值為,求函數的極大值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

(2013•浙江)已知e為自然對數的底數,設函數f(x)=(ex﹣1)(x﹣1)k(k=1,2),則( 。
A.當k=1時,f(x)在x=1處取得極小值
B.當k=1時,f(x)在x=1處取得極大值
C.當k=2時,f(x)在x=1處取得極小值
D.當k=2時,f(x)在x=1處取得極大值

查看答案和解析>>

同步練習冊答案