【題目】如圖,在多面體中,是正方形,平面平面,,點M為棱的中點.

1)求證:

2)求證:平面平面;

3)若,求E點到平面的距離.

【答案】1)證明見解析;(2)證明見解析;(3.

【解析】

(1)根據(jù)條件證明四邊形為平行四邊形即可.

(2)設交于點,則的中點,由三角形中位線的性質可得平面,由面面垂直的性質定理可得,則平面.最后利用面面平行的判斷定理可得平面平面.

(3)連接.由幾何關系可證得AC⊥平面,且垂足為, ,由,可求E點到平面的距離.

1)證明:因為平面平面

所以

因為

所以四邊形為平行四邊形

所以

2)證明:

交于點N,則N的中點,的中位線,

.

平面,平面,

平面.

平面平面,且,

為平行四邊形,∴.

平面,平面,

平面.

又∵,

∴平面平面;

3)解:連接,.

在正方形中,

又∵平面,∴.

,

平面,且垂足為N

,

N中點知,

中,

,

因為,

E點到平面的距離為,則.

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了解某地區(qū)某種農產品的年產量(單位:噸)對價格(單位:千元/噸)和利潤的影響,對近五年該農產品的年產量和價格統(tǒng)計如下表:

1

2

3

4

5

8

6

5

4

2

已知具有線性相關關系.

(1)求關于的線性回歸方程;

(2)若每噸該農產品的成本為2.2千元,假設該農產品可全部賣出,預測當年產量為多少噸時,年利潤取到最大值?

參考公式: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體的棱長為1,線段上有兩個動點,且,現(xiàn)有如下四個結論:

平面;

三棱錐的體積為定值;異面直線所成的角為定值,

其中正確結論的序號是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合,若AB=B,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的宣傳費和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.


46.6

563

6.8

289.8

1.6

1469

108.8

表中=,=

(Ⅰ)根據(jù)散點圖判斷,,哪一個適宜作為年銷售量y關于年宣傳費x的回歸方程類型(給出判斷即可,不必說明理由);

(Ⅱ)根據(jù)()的判斷結果及表中數(shù)據(jù),建立y關于x的回歸方程;

(III)已知這種產品的年利潤zx,y的關系為,根據(jù)()的結果回答下列問題:

(Ⅰ)當年宣傳費時,年銷售量及年利潤的預報值時多少?

(Ⅱ)當年宣傳費為何值時,年利潤的預報值最大?

附:對于一組數(shù)據(jù),,……,,其回歸線的斜率和截距的最小二乘估計分別為:

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)及其導數(shù)f′(x),若存在x0,使得f(x0)f′(x0),則稱x0f(x)的一個“巧值點”,則下列函數(shù)中有“巧值點”的是________

f(x)x2;f(x)exf(x)lnx;f(x)tanx;.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足:

(1) 證明:數(shù)列是等比數(shù)列;

(2) 求使不等式成立的所有正整數(shù)m、n的值;

(3) 如果常數(shù)0 < t < 3,對于任意的正整數(shù)k,都有成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線過點,圓.

(1)當直線與圓相切時,求直線的一般方程;

(2)若直線與圓相交,且弦長為,求直線的一般方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商店為了解氣溫對某產品銷售量的影響,隨機記錄了該商店月份中天的日銷售量(單位:千克)與該地當日最低氣溫(單位:℃)的數(shù)據(jù),如表所示:

(1)求的回歸方程

(2)判斷之間是正相關還是負相關;若該地月份某天的最低氣溫為,請用(1)中的回歸方程預測該商店當日的銷售量.

參考公式:,

查看答案和解析>>

同步練習冊答案