分析 根據(jù)函數(shù)$f(x)=\sqrt{{2^{a{x^2}-2ax-1}}-1}$的定義域為R,得出${2}^{{ax}^{2}-2ax-1}$-1≥0恒成立,化為ax2-2ax-1≥0恒成立,即$\left\{\begin{array}{l}{a>0}\\{△={4a}^{2}-4a×(-1)≤0}\end{array}\right.$,解不等式組即可.
解答 解:函數(shù)$f(x)=\sqrt{{2^{a{x^2}-2ax-1}}-1}$的定義域為R,
∴${2}^{{ax}^{2}-2ax-1}$-1≥0恒成立,
即${2}^{{ax}^{2}-2ax-1}$≥1恒成立,
∴ax2-2ax-1≥0恒成立;
即$\left\{\begin{array}{l}{a>0}\\{△={4a}^{2}-4a×(-1)≤0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a>0}\\{-1≤a≤0}\end{array}\right.$,
即a∈∅;
∴實數(shù)a的取值范圍是∅.
故答案為:∅.
點評 本題考查了求函數(shù)定義域的應(yīng)用問題,也考查了不等式恒成立的問題,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{2\sqrt{5}}}{25}$ | B. | $\frac{{2\sqrt{5}}}{25}$ | C. | $2\sqrt{5}$ | D. | $\frac{{\sqrt{5}}}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com