15.若23-x<0.52x-4,則x的取值范圍是(-∞,1).

分析 把不等式兩邊化為同底數(shù),再由指數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化為一元一次不等式求解.

解答 解:由23-x<0.52x-4,得23-x<24-2x,
即3-x<4-2x,解得:x<1.
∴x的取值范圍是(-∞,1).
故答案為:(-∞,1).

點(diǎn)評 本題考查指數(shù)不等式的解法,是基礎(chǔ)的計(jì)算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別是等比數(shù)列{bn}的第2項(xiàng)、第3項(xiàng)、第4項(xiàng).
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}對n∈N*均有$\frac{{c}_{1}}{_{1}}$+$\frac{{c}_{2}}{_{2}}$+…+$\frac{{c}_{n}}{_{n}}$=an+1成立,求c1+c2+c3+…+c2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知整數(shù)對排列如下:(1,1),(1,3),(2,2),(3,1),(1,5),(2,4),(3,3),(4,2),(5,1),…則第79個數(shù)對是( 。
A.(15,3)B.(16,2)C.(14,4)D.(17,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=$\frac{1}{3}{x^3}+\frac{a}{2}{x^2}+({a-1})x+1$,x∈R,其中參數(shù)a∈R.
(Ⅰ)是否存在a,使得f(x)在R上單調(diào)遞增,若存在求a的取值集合,不存在說明理由;
(Ⅱ)若過點(diǎn)P(0,1)且與y=f(x)相切的直線有且只有一條,求a的值;
(Ⅲ)在(Ⅱ)的條件下,設(shè)點(diǎn)Q(m,n),且m>0,證明:若過Q且與曲線y=f(x)相切的直線有三條,則-m+1<n<$\frac{1}{3}{m^3}$-m+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)y=-x2+4ax在區(qū)間[1,3]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是(-∞,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知a>0,b>0且a≠b,設(shè)x=$\frac{{\sqrt{a}+\sqrt}}{2}$,$y=\sqrt{a+b}$,$z=\root{4}{ab}$,則x,y,z的大小關(guān)系是( 。
A.y>x>zB.x>y>zC.y>z>xD.z>y>x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.根據(jù)下列2×2列聯(lián)表,判斷“患肝病和嗜酒有關(guān)系”犯錯誤的概率不會超過( 。
嗜酒不嗜酒總計(jì)
患肝病201030
不患肝病304575
總計(jì)5055105
卡方臨界值表
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
A.10%B.5%C.2.5%D.1%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知冪函數(shù)$f(x)={x^{{m^2}-2m-3}}(m∈Z)$為偶函數(shù),且在(0,+∞)上是減函數(shù),則f(x)的解析式是f(x)=x-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知向量$\overrightarrow m$=(2sinx,1),$\overrightarrow n$=($\sqrt{3}$cosx,2cos2x),函數(shù)f(x)=$\overrightarrow m$•$\overrightarrow n$-t.
( I)若方程f(x)=0在x∈[0,$\frac{π}{2}$]上有解,求t的取值范圍;
(II)在△ABC中,a,b,c分別是A,B,C所對的邊,當(dāng)t=3且f(A)=-1,b+c=2時,求a的最小值.

查看答案和解析>>

同步練習(xí)冊答案