4.如圖是一個正方體被切掉部分后所得幾何體的三視圖,則該幾何體的體積為( 。
A.$\frac{8}{3}$B.$\frac{4}{3}$C.$\frac{8\sqrt{2}}{3}$D.$\frac{4\sqrt{2}}{3}$

分析 該幾何體為正方體先切割得到的三棱柱后,再切割得到四棱錐,由此求出幾何體的體積.

解答 解:由三視圖可知:
該幾何體為正方體先切割得到的三棱柱后,
再切割得到四棱錐S-ABCD,如圖所示,
則其體積為:
VS-ABCD=$\frac{1}{3}$•S正方形ABCD•AS
=$\frac{1}{3}$×22×2
=$\frac{8}{3}$.
故選:A.

點評 本題考查了利用三視圖球幾何體的體積問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知曲線C1的參數(shù)方程為:$\left\{\begin{array}{l}{x=cosθ}\\{y=1+sinθ}\end{array}$(θ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為:ρ=4sin(θ+$\frac{π}{3}$),直線l的極坐標方程為θ=$\frac{π}{6}$.
(1)求曲線C1的普通方程與曲線C2的直角坐標方程;
(2)若曲線C1和曲線C2與直線l分別交于非坐標原點的A,B兩點,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)$f(x)=2sin(ωx+ϕ)(ω>0,-\frac{π}{2}<ϕ<\frac{π}{2})$的部分圖象如圖所示,則ω,ϕ的值為(  )
A.$2\;,\;\frac{2π}{3}$B.$2\;,\;-\frac{π}{3}$C.$1\;,\;\frac{π}{12}$D.$1\;,\;-\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1的左焦點為F,點P為雙曲線右支上的一點,且PF與圓x2+y2=9相切于點N,M為線段PF的中點,O 為坐標原點,則|MN|-|MO|=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.關(guān)于直線m,n和平面α,β,有以下四個命題:
①若m∥α,n∥β,α∥β,則m∥n;    
②若m∥n,m?α,n⊥β,則α⊥β;
③若α∩β=m,m∥n,則n∥α且n∥β;
④若m⊥n,α∩β=m,則n⊥α或n⊥β.
其中正確命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點和短軸頂點構(gòu)成面積為2的正方形.
(I)求橢圓的標準方程;
(II)設(shè)A1,A2分別為橢圓C的左右頂點,F(xiàn)為右焦點,過A1的直線與橢圓相交于另一點P,與直線x=$\sqrt{2}$相交于點B,以A2B為直徑作圓.判斷直線PF和該圓的位置關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若平面向量$\overrightarrow a=(-1,2)$,$|{\overrightarrow b}|=3\sqrt{5}$,設(shè)$\overrightarrow a$與$\overrightarrow b$的夾角為θ,且cosθ=-1,則$\overrightarrow b$的坐標為(3,-6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)O是坐標原點,AB是圓錐曲線的一條不經(jīng)過點O且不垂直于坐標軸的弦,M是弦AB的中點,KAB,KOM分別表示直線AB,OM的斜率,在圓x2+y2=r2中,KAB•KOM=-1,在橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)中,類比上述結(jié)論可得若AB是圓錐曲線的一條不經(jīng)過點O且不垂直于坐標軸的弦,M是弦AB的中點,則${K_{AB}}•{K_{OM}}=-\frac{b^2}{a^2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知z1與z2是共軛虛數(shù),有4個命題①z12<|z2|2; ②z1z2=|z1z2|;③z1+z2∈R;④$\frac{{z}_{1}}{{z}_{2}}$∈R,一定正確的是( 。
A.①②B.②③C.③④D.①②③

查看答案和解析>>

同步練習(xí)冊答案