分析 將P(1,2),代入橢圓方程,則$\frac{1}{m}+\frac{4}{n}=1$,(m>0,n>0),由基本不等式的性質(zhì)則m+n=(m+n)($\frac{1}{m}$+$\frac{4}{n}$)=1+$\frac{4m}{n}$+$\frac{n}{m}$+4≥5+2$\sqrt{\frac{4m}{n}•\frac{n}{m}}$=9.
解答 解:將P(1,2),代入橢圓$\frac{x^2}{m}+\frac{y^2}{n}=1$,則$\frac{1}{m}+\frac{4}{n}=1$,(m>0,n>0),
m+n=(m+n)($\frac{1}{m}$+$\frac{4}{n}$)=1+$\frac{4m}{n}$+$\frac{n}{m}$+4≥5+2$\sqrt{\frac{4m}{n}•\frac{n}{m}}$=9,
當(dāng)且僅當(dāng)$\frac{4m}{n}$=$\frac{n}{m}$時(shí),m=3,n=6時(shí),取等號(hào),
∴m+n的最小值9,
故答案為:9.
點(diǎn)評(píng) 本題考查基本等式及橢圓的標(biāo)準(zhǔn)方程的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(文)試卷(解析版) 題型:解答題
已知是等差數(shù)列, 是等比數(shù)列, 為數(shù)列的前項(xiàng)和, ,且, ().
(1)求和;
(2)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(理)試卷(解析版) 題型:解答題
選修4-5:不等式選講
已知函數(shù).
(1)若,求不等式的解集;
(2)若方程有三個(gè)不同的解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{e}$) | B. | (0,$\frac{1}{2e}$) | C. | (-∞,$\frac{1}{2e}$) | D. | ($\frac{1}{2e}$,$\frac{1}{e}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${x^2}-\frac{y^2}{6}=1$ | B. | ${x^2}-\frac{y^2}{6}=1(x>1)$ | C. | $\frac{x^2}{4}-\frac{y^2}{8}=1(x>2)$ | D. | $\frac{x^2}{4}-\frac{y^2}{8}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3$\sqrt{5}$ | B. | 4$\sqrt{3}$ | C. | 3$\sqrt{5}$或$\sqrt{13}$ | D. | 3$\sqrt{5}$或4$\sqrt{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com