10.已知集合U=R,A={x|(x-2)(x+1)≤0},B={x|0≤x<3},則∁U(A∪B)=(  )
A.(-1,3)B.(-∞,-1]∪[3,+∞)C.[-1,3]D.(-∞,-1)∪[3,+∞)

分析 解不等式得集合A,根據(jù)并集與補(bǔ)集的定義寫出運(yùn)算結(jié)果即可.

解答 解:集合U=R,A={x|(x-2)(x+1)≤0}={x|-1≤x≤2},
B={x|0≤x<3},
∴A∪B={x|-1≤x<3},
∴∁U(A∪B)={x|x<-1或x≥3}=(-∞,-1)∪[3,+∞).
故選:D.

點(diǎn)評 本題考查了解不等式與集合的運(yùn)算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)是定義在R上的偶函數(shù),x<0時,f(x)=x3,那么f(2)的值是( 。
A.8B.-8C.$\frac{1}{8}$D.$-\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知三次函數(shù)f(x)=x3+ax2+7ax在 (-∞,+∞)是增函數(shù),則a的取值范圍是( 。
A.0≤a≤21B.a=0或a=7C.a<0或a>21D.a=0或a=21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在平行四邊形ABCD中,設(shè)AB的長為a(a>0),AD=1,∠BAD=60°,E為CD的中點(diǎn).若$\overrightarrow{AC}$•$\overrightarrow{BE}$=1,則a的值為( 。
A.$\frac{1}{2}$B.2C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)=x2+2xf′(1),則f′(0)=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知$f({sinx})=2x+1,x∈[{-\frac{π}{2},\frac{π}{2}}]$,則f(cos10)=21-7π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知直線x-y+2=0與圓C:(x-3)2+(y-3)2=4交于點(diǎn)A,B,過弦AB的中點(diǎn)的直徑為MN,則四邊形AMBN的面積為(  )
A.$8\sqrt{2}$B.8C.$4\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知命題p:?x∈R,使tanx=1,命題p的非是( 。
A.¬p:?x∈R,使tanx≠1B.¬p:?x∈R,使tanx≠1
C.¬p:?x∉R,使tanx≠1D.¬p:?x∈R,使tanx≠1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示在四棱錐A-BCDM中,BD⊥平面ABC,AC=BC,N是棱AB的中點(diǎn).
求證:CN⊥AD.

查看答案和解析>>

同步練習(xí)冊答案