A. | $\frac{1}{2}$ | B. | 2 | C. | $\sqrt{3}$ | D. | 3 |
分析 首先利用$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{AD}$,$\overrightarrow{BE}$=$\overrightarrow{BC}$+$\overrightarrow{CE}$=$\overrightarrow{AD}$-$\frac{1}{2}$$\overrightarrow{AB}$,代入已知等式展開,利用數(shù)量積公式求數(shù)值,得到關(guān)于a的方程解之.
解答 解:設(shè)AB的長為a(a>0),因為$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{AD}$,$\overrightarrow{BE}$=$\overrightarrow{BC}$+$\overrightarrow{CE}$=$\overrightarrow{AD}$-$\frac{1}{2}$$\overrightarrow{AB}$,
于是$\overrightarrow{AC}$•$\overrightarrow{BE}$=($\overrightarrow{AB}$+$\overrightarrow{AD}$)•($\overrightarrow{AD}-\frac{1}{2}\overrightarrow{AB}$)=$\frac{1}{2}$$\overrightarrow{AB}$•$\overrightarrow{AD}$-$\frac{1}{2}$$\overrightarrow{AB}$2+$\overrightarrow{AD}$2=-$\frac{1}{2}$a2+$\frac{1}{4}$a+1,
由已知可得-$\frac{1}{2}$a2+$\frac{1}{4}$a+1=1.又a>0,
∴a=$\frac{1}{2}$,即AB的長為$\frac{1}{2}$.
故選A.
點評 本題考查了平面向量的運算;首先將所求利用平行四邊形的相鄰邊向量表示,然后運用數(shù)量積公式是解答的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在點x0處的斜率 | |
B. | 在點(x0,f(x0))處的切線與x軸所夾的銳角的正切值 | |
C. | 曲線y=f(x)在點(x0,f(x0))處切線的斜率 | |
D. | 點(x0,f(x0))與點(0,0)連線的斜率 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,3) | B. | (-∞,-1]∪[3,+∞) | C. | [-1,3] | D. | (-∞,-1)∪[3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com