已知兩點(diǎn)A(-1,0)、B(1,0),點(diǎn)P(x,y)是直角坐標(biāo)平面上的動(dòng)點(diǎn),若將點(diǎn)P的橫坐標(biāo)保持不變、縱坐標(biāo)擴(kuò)大到數(shù)學(xué)公式倍后得到點(diǎn)Q(x,數(shù)學(xué)公式)滿足數(shù)學(xué)公式
(1)求動(dòng)點(diǎn)P所在曲線C的軌跡方程;
(2)過點(diǎn)B作斜率為-數(shù)學(xué)公式的直線i交曲線C于M、N兩點(diǎn),且滿足數(shù)學(xué)公式(O為坐標(biāo)原點(diǎn)),試判斷點(diǎn)H是否在曲線C上,并說明理由.

解(1)依據(jù)題意,有,
,∴x2-1+2y2=1.
∴動(dòng)點(diǎn)P所在曲線C的軌跡方程是+y2=1.
(2)因直線l過點(diǎn)B,且斜率為k=-,故有l(wèi):y=-(x-1)
聯(lián)立直線與橢圓,消元可得2x2-2x-1=0.
設(shè)兩曲線的交點(diǎn)為M(x1,y1)、N(x2,y2),可得得 x1+x2=1,x1x2=-,
于是 x1+x2=1,y1+y2=
,于是=(-x1-x2,-y1-y2),可得點(diǎn)H(-1,-).
將點(diǎn)H(-1,-)的坐標(biāo)代入曲線C的方程的左邊,有=1(=右邊),即點(diǎn)H的坐標(biāo)滿足曲線C的方程.
所以點(diǎn)H在曲線C上.
分析:(1)確定向量AQ,BQ的坐標(biāo),利用,即可求動(dòng)點(diǎn)P所在曲線C的軌跡方程;
(2)求出直線方程與橢圓聯(lián)立,利用,求得點(diǎn)H的坐標(biāo)代入曲線C的方程,驗(yàn)證可得結(jié)論.
點(diǎn)評(píng):本題考查軌跡方程的求法,考查直線與橢圓的位置關(guān)系,考查向量知識(shí)的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)A(1,0),B(b,0),若拋物線y2=4x上存在點(diǎn)C,使得△ABC為正三角形,則b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)A(1,0),B(1,
3
3
),O為坐標(biāo)原點(diǎn),點(diǎn)C在第三象限,且∠AOC=
3
,設(shè)
OC
=2
OA
OB
,則λ等于(  )
A、-2B、2C、-3D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)A(1,0),B(1,
3
)
,O為坐標(biāo)原點(diǎn),點(diǎn)C在第二象限,且∠AOC=
6
,設(shè)
OC
=-2
OA
OB
,(λ∈R)
,則λ等于( 。
A、-
1
2
B、
1
2
C、-1
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•淄博一模)在平面直角坐標(biāo)系內(nèi)已知兩點(diǎn)A(-1,0)、B(1,0),若將動(dòng)點(diǎn)P(x,y)的橫坐標(biāo)保持不變,縱坐標(biāo)擴(kuò)大到原來的
2
倍后得到點(diǎn)Q(x,
2
y)
,且滿足
AQ
BQ
=1

(I)求動(dòng)點(diǎn)P所在曲線C的方程;
(II)過點(diǎn)B作斜率為-
2
2
的直線l交曲線C于M、N兩點(diǎn),且
OM
+
ON
+
OH
=
0
,又點(diǎn)H關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為點(diǎn)G,試問M、G、N、H四點(diǎn)是否共圓?若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)A(-1,0),B(0,2),點(diǎn)P是圓(x-1)2+y2=1上任意一點(diǎn),則△PAB面積的最大值與最小值分別是( 。
A、2,
1
2
(4-
5
)
B、
1
2
(4+
5
)
,
1
2
(4-
5
)
C、
5
,4-
5
D、
1
2
(
5
+2)
,
1
2
(
5
-2)

查看答案和解析>>

同步練習(xí)冊(cè)答案