已知函數(shù)y=6sin(ωx+ϕ)(ω>0)的部分圖象如圖所示,設(shè)P是圖象的最高點(diǎn),A,B是圖象與x軸的交點(diǎn),若tan∠APB=2,則ω=
 
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:由解析式求出函數(shù)的周期與最值,做出輔助線過p作PD⊥x軸于D,根據(jù)周期的大小看出直角三角形中直角邊的長度,解出∠APD與∠BPD的正切函數(shù)值,利用tan∠APB=tan(∠APD+∠BPD),即可求出ω的值.
解答: 解:函數(shù)y=sin(ωx+φ),
∴AB=T=
ω
,最大值為6,
過P作PD⊥x軸于D,則AD是四分之一個周期,有AD=
π
,DB=
,DP=6,
在直角三角形ADP中有tan∠APD=
AD
DP
,
在直角三角形BDP中有tan∠BPD=
BD
DP
,
tan∠APB=tan(∠APD+∠BPD)=
AD
DP
+
BD
DP
1-
AD
DP
×
BD
DP
=
π
12ω
+
12ω
1-
π
12ω
×
12ω
=2.
化簡得:288ω2-48πω-6π2=0,解得ω=
π
4
或者-
π
12
(舍去).
故答案為:
π
4
點(diǎn)評:本題考查三角函數(shù)的圖象的應(yīng)用與兩角和的正切函數(shù)公式的應(yīng)用,本題解題的關(guān)鍵是看出函數(shù)的周期,把要求正弦的角放到直角三角形中,利用三角函數(shù)的定義得到結(jié)果,考察計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)B(1,0),P是函數(shù)y=ex圖象上不同于A(0,1)的一點(diǎn).有如下結(jié)論:
①存在點(diǎn)P使得△ABP是等腰三角形;
②存在點(diǎn)P使得△ABP是銳角三角形;
③存在點(diǎn)P使得△ABP是直角三角形.
其中,正確的結(jié)論的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的偶函數(shù),且當(dāng)x>0時,f(x)=
x-2
x+1
,若對任意實(shí)數(shù)t∈[
1
2
,2],都有f(t+a)-f(t-1)>0恒成立,則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,-3)∪(0,+∞)
B、(-1,0)
C、(0,1)
D、(-∞,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2-4x+6,x∈[1,5]的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角,A,B,C所對的邊分別為a,b,c,已知向量
a
=(a,b),向量
b
=(cosA,3cosB)且
a
b

(1)求證:tanB=3tan A;
(2)若tanC=2,求A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x2-2x,則當(dāng)x∈[-3,0)時,f(x)的取值范圍中( 。
A、[-3,0)
B、(0,1]
C、(0,3]
D、[-3,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=-3,an=2an-1+2n+3(n≥2.且n∈N*
(1)求a2,a3的值;
(2)設(shè)bn=
an+3
2n
(n∈N*)
,證明:{bn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
b
,
c
不共線,且兩兩之間的夾角都相等,若|
a
|=2,|
b
|=2,|
c
|=1
,則
a
+
b
+
c
a
的夾角為( 。
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex+ae -x 為偶函數(shù),則實(shí)數(shù)a的值為
 

查看答案和解析>>

同步練習(xí)冊答案