分析 (1)根據(jù)向量數(shù)量積的公式進行求解即可.
(2)根據(jù)向量數(shù)量積的四則運算法則進行化簡求解即可.
解答 解:(1)∵|${\left.{\overrightarrow a}\right.$|=3,|${\left.{\overrightarrow b}\right.$|=4,且$\overrightarrow a$與$\overrightarrow b$的夾角為120°,
∴$\overrightarrow a$•$\overrightarrow b$=|$\overrightarrow a$|•|$\overrightarrow b$|cos120°=3×4cos120°=12×(-$\frac{1}{2}$)=6;
(2)($\overrightarrow b$-2$\overrightarrow a$)•($\overrightarrow a$+2$\overrightarrow b$)=-2|$\overrightarrow a$|2+2|$\overrightarrow b$|2-3$\overrightarrow a$•$\overrightarrow b$=-2×9+2×16-3×(-6)=-18+32+18=32;.
點評 本題主要考查向量數(shù)量積的計算以及向量數(shù)量積的四則運算,根據(jù)相應的公式是解決本題的關鍵.比較基礎.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 歸納推理 | B. | 演繹推理 | C. | 類比推理 | D. | 特殊推理 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$) | B. | $\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$,則$\overrightarrow$=$\overrightarrow{c}$ | ||
C. | |$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$| | D. | 若|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則$\overrightarrow{a}$•$\overrightarrow$=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{5}{8}$ | C. | $\frac{4}{9}$ | D. | $\frac{5}{9}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 148 | B. | 126 | C. | 102 | D. | 88 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com