10.對(duì)任意非零向量:$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$.則( 。
A.($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)B.$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$,則$\overrightarrow$=$\overrightarrow{c}$
C.|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$|D.若|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則$\overrightarrow{a}$•$\overrightarrow$=0

分析 根據(jù)向量數(shù)量積的公式分別進(jìn)行判斷即可.

解答 解:A.($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=|$\overrightarrow{a}$|•|$\overrightarrow$|cos<$\overrightarrow{a}$,$\overrightarrow$>•$\overrightarrow{c}$與$\overrightarrow{c}$共線,
$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)=$\overrightarrow{a}$•|$\overrightarrow$|•|$\overrightarrow{c}$|cos$\overrightarrow$,$\overrightarrow{c}$>與$\overrightarrow{a}$共線,
則($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)不一定成立,故A錯(cuò)誤,
B.由$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$,得$\overrightarrow{a}$•($\overrightarrow$-$\overrightarrow{c}$)=0,則$\overrightarrow{a}$⊥($\overrightarrow$-$\overrightarrow{c}$),無法得到$\overrightarrow$=$\overrightarrow{c}$,故B錯(cuò)誤,
C.$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|cos<$\overrightarrow{a}$,$\overrightarrow$>=|$\overrightarrow{a}$|•|$\overrightarrow$|不一定成立,故C錯(cuò)誤,
D.若|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則平方得|$\overrightarrow{a}$|2+|$\overrightarrow$||2+2$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$||2+|$\overrightarrow$|2-2$\overrightarrow{a}$•$\overrightarrow$,即4$\overrightarrow{a}$•$\overrightarrow$=0,即$\overrightarrow{a}$•$\overrightarrow$=0成立,故D正確
故選:D

點(diǎn)評(píng) 本題主要考查向量數(shù)量積公式的應(yīng)用,考查學(xué)生的運(yùn)算能力

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.下列關(guān)于空間向量的命題中,正確的有①③④.
①若向量$\overrightarrow{a}$,$\overrightarrow$與空間任意向量都不能構(gòu)成基底,則$\overrightarrow{a}$∥$\overrightarrow$;
②若非零向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足$\overrightarrow{a}$⊥$\overrightarrow$,$\overrightarrow$⊥$\overrightarrow{c}$則有$\overrightarrow{a}$∥$\overrightarrow{c}$;
③若$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$是空間的一組基底,且$\overrightarrow{OD}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$,則A,B,C,D四點(diǎn)共面;
④若向量$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow$+$\overrightarrow{c}$,$\overrightarrow{c}$+$\overrightarrow{a}$,是空間一組基底,則$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$也是空間的一組基底.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某工廠用A,B兩種配件生產(chǎn)甲,乙兩種產(chǎn)品,已知每生成一件甲產(chǎn)品需要3個(gè)A配件和2個(gè)B配件,需要工時(shí)1h,每生產(chǎn)一件乙產(chǎn)品需要1個(gè)A配件和3個(gè)B配件,需要工時(shí)2h,該廠每天最多可從配件廠獲得13個(gè)A配件和18個(gè)B配件,工生產(chǎn)總工時(shí)不得低于作8h,若生產(chǎn)一件甲產(chǎn)品獲利5萬元,生產(chǎn)一件乙產(chǎn)品獲利3萬元,若通過恰當(dāng)?shù)纳a(chǎn),該廠每天可獲得的最大利潤為(  )
A.24萬元B.27萬元C.30萬元D.33萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定積分${∫}_{0}^{1}$exdx=( 。
A.1+eB.eC.e-1D.1-e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.sin15°的值為(  )
A.$\frac{\sqrt{6}-\sqrt{2}}{2}$B.$\frac{\sqrt{6}+\sqrt{2}}{2}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.四面體ABCD中,已知AB⊥面BCD,且∠BCD=$\frac{π}{2}$,AB=3,BC=4,CD=5.
(1)求證:平面ABC⊥平面ACD;
(2)求此四面體ABCD的體積和表面積;
(3)求此四面體ABCD的外接球半徑和內(nèi)切球半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)函數(shù)f(x)=$\frac{2x}{x+1}$(x>0),觀察:
f1(x)=f(x)=$\frac{2x}{x+1}$,
f2(x)=f(f1(x))=$\frac{4x}{3x+1}$,
f3(x)=f(f2(x))=$\frac{8x}{7x+1}$,
f(x)=f(f3(x))=$\frac{16x}{15x+1}$,

根據(jù)以上事實(shí),由歸納推理可得:
當(dāng)n∈N*且n≥2時(shí),fn(x)=f(fn-1(x))=$\frac{{2}^{n}x}{({2}^{n}-1)x+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow a$,$\overrightarrow b$,若|${\left.{\overrightarrow a}\right.$|=3,|${\left.{\overrightarrow b}\right.$|=4,且$\overrightarrow a$與$\overrightarrow b$的夾角為120°.求:
(1)$\overrightarrow a$•$\overrightarrow b$;
(2)($\overrightarrow b$-2$\overrightarrow a$)•($\overrightarrow a$+2$\overrightarrow b$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為銳角,|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=$\sqrt{11}$,且$\overrightarrow{a}$與$\overrightarrow{a}$-$\overrightarrow$夾角的余弦值為$\frac{\sqrt{3}}{3}$,則向量$\overrightarrow$在$\overrightarrow{a}$方向上的投影為( 。
A.$\frac{5\sqrt{3}}{3}$B.3C.2或3D.-$\frac{\sqrt{3}}{3}$或$\frac{5\sqrt{3}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案