【題目】(1)取何值時,方程()無解?有一解?有兩解?有三解?
(2)函數(shù)的性質(zhì)通常指函數(shù)的定義域、值域、周期性、單調(diào)性、奇偶性等,請選擇適當(dāng)?shù)奶骄宽樞,研究函?shù)的性質(zhì),并在此基礎(chǔ)上,作出其在的草圖;
【答案】(1)時,無解;時,有一解;時,有兩解;時,有三解;
(2)定義域為,值域為,周期為,在為增函數(shù),在上為減函數(shù),偶函數(shù);作圖見解析
【解析】
(1)令函數(shù),由,得的單調(diào)性和值域,由此得的何值范圍;
(2)先研究的定義域、奇偶性、周期性,再研究函數(shù)的單調(diào)性、值域,最后畫出圖形.
(1)令,,,
在,遞增,在遞減,,
,,
綜上:時,無解;時,有一解;時,有兩解;時,有三解.
(2)∵,∴f(x)的定義域為R;
∵,∴f(x)為偶函數(shù);
∵f(x+π)==+=f(x),∴f(x)是周期為π的周期函數(shù);
當(dāng)時,f(x)=,
∴當(dāng)時,f(x)單調(diào)遞減;當(dāng)時,
f(x)=,
f(x)單調(diào)遞增;又∵f(x)是周期為π的偶函數(shù),
∴f(x)在上單調(diào)遞增,在上單調(diào)遞減(k∈Z);
∵當(dāng)時,;當(dāng)時,.∴f(x)的值域為;
由以上性質(zhì)可得:f(x)在[﹣π,π]上的圖象如圖所示:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點,若為線段上的動點(不含).
(1)平面與平面是否互相垂直?如果是,請證明;如果不是,請說明理由;
(2)求二面角的余弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),給出以下四個命題:(1)當(dāng)時,單調(diào)遞減且沒有最值;(2)方程一定有實數(shù)解;(3)如果方程(為常數(shù))有解,則解得個數(shù)一定是偶數(shù);(4)是偶函數(shù)且有最小值.其中假命題的序號是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集為,,定義集合的特征函數(shù)為,對于,,給出下列四個結(jié)論:
(1)對任意,有
(2)對任意,若,則
(3)對任意,有
(4)對任意,有
其中,正確的序號是_____
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某游戲棋盤上標(biāo)有第、、、、站,棋子開始位于第站,選手拋擲均勻硬幣進行游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到跳到第站或第站時,游戲結(jié)束.設(shè)游戲過程中棋子出現(xiàn)在第站的概率為.
(1)當(dāng)游戲開始時,若拋擲均勻硬幣次后,求棋子所走站數(shù)之和的分布列與數(shù)學(xué)期望;
(2)證明:;
(3)若最終棋子落在第站,則記選手落敗,若最終棋子落在第站,則記選手獲勝.請分析這個游戲是否公平.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,且
()求數(shù)列的通項公式;
()若數(shù)列滿足,求數(shù)列的通項公式;
()在()的條件下,設(shè),問是否存在實數(shù)使得數(shù)列是單調(diào)遞增數(shù)列?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)的對稱性有如下結(jié)論:對于給定的函數(shù),如果對于任意的都有成立為常數(shù)),則函數(shù)關(guān)于點對稱.
(1)用題設(shè)中的結(jié)論證明:函數(shù)關(guān)于點;
(2)若函數(shù)既關(guān)于點對稱,又關(guān)于點對稱,且當(dāng)時,,求:①的值;
②當(dāng)時,的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的值域是,有下列結(jié)論:①當(dāng)時,; ②當(dāng)時,;③當(dāng)時,; ④當(dāng)時,.其中結(jié)論正確的所有的序號是( ).
A.①②B.③④C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在邊長為的等邊三角形中,點分別是邊上的點,滿足且,將沿直線折到的位置. 在翻折過程中,下列結(jié)論成立的是( )
A.在邊上存在點,使得在翻折過程中,滿足平面
B.存在,使得在翻折過程中的某個位置,滿足平面平面
C.若,當(dāng)二面角為直二面角時,
D.在翻折過程中,四棱錐體積的最大值記為,的最大值為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com