定義在實數(shù)集R上的函數(shù)f(x)滿足f(x)+f(x+2)=0,且f(4-x)=f(x).現(xiàn)有以下三種敘述:
①8是函數(shù)f(x)的一個周期;
②f(x)的圖象關于直線x=2對稱;
③f(x)是偶函數(shù).
其中正確的是( 。
A、②③B、①②C、①③D、①②③
考點:命題的真假判斷與應用
專題:閱讀型,函數(shù)的性質及應用
分析:由f(x)滿足f(x)+f(x+2)=0,將x換成x+2,即可得到f(x+4)=f(x),即可判斷①;
由f(x)滿足f(4-x)=f(x),即有f(2+x)=f(2-x),由對稱性,即可判斷②;
由周期性和對稱性,即可得到f(-x)=f(x),即可判斷③.
解答: 解:對于①,由于定義在實數(shù)集R上的函數(shù)f(x)滿足f(x)+f(x+2)=0,
則f(x+2)=-f(x),即有f(x+4)=-f(x+2),則f(x+4)=f(x),
即4是函數(shù)的最小正周期,故①對;
對于②,由于f(x)滿足f(4-x)=f(x),即有f(2+x)=f(2-x),
即f(x)的圖象關于直線x=2對稱,故②對;
對于③,由于f(4-x)=f(x),即有f(-x)=f(x+4),
又f(x+4)=f(x),則f(-x)=f(x),則f(x)為偶函數(shù),故③對.
故選D.
點評:本題考查函數(shù)的性質和運用,考查函數(shù)的奇偶性和對稱性、周期性及運用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=
x2+1
,則y=f(x)的奇偶性是( 。
A、奇函數(shù)
B、偶函數(shù)
C、既是奇函數(shù)又是偶函數(shù)
D、非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知映射A→B的對應法則f:x→2x+1(x∈A),則A中的元素3在B中與之對應的元素是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算下列各式的值:
(1)0.064-
1
3
-(-
1
8
)0+16
3
4
+0.25
1
2

(2)log216+2log36-log312

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(x,1),
b
=(1,2-x),若
a
、
b
共線,則x的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解下列方程
(1)log(x+3)(x2+3x)=1
(2)lg(2x)×lg(3x)=lg2×lg3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A={x|x2-4x-5=0},B={x|x+a=0},若“x∈B是x∈A的充分條件”,則實數(shù)a的取值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:A(1,2),B(-5,8),C(-2,-1)求證:
AB
AC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設點(x0,0)在函數(shù)f(x)=sin(x-
π
3
)-1的圖象上,其中
π
2
<x0
3
,則cos(x0-
π
6
)的值為( 。
A、-
3
2
B、-
1
2
C、
1
2
D、
3
2

查看答案和解析>>

同步練習冊答案