【題目】已知橢圓C:9x2+y2=m2(m>0),直線l不過原點(diǎn)O且不平行于坐標(biāo)軸,l與C有兩個交點(diǎn)A,B,線段AB的中點(diǎn)為M.
(1)證明:直線OM的斜率與l的斜率的乘積為定值;
(2)若l過點(diǎn)( ,m),延長線段OM與C交于點(diǎn)P,四邊形OAPB能否為平行四邊形?若能,求此時l的斜率;若不能,說明理由.

【答案】
(1)證明:設(shè)直線l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM),

將y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,

則判別式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,

則x1+x2= ,則xM= = ,yM=kxM+b=

于是直線OM的斜率kOM= = ,

即kOMk=﹣9,

∴直線OM的斜率與l的斜率的乘積為定值


(2)解:四邊形OAPB能為平行四邊形.

∵直線l過點(diǎn)( ,m),

∴由判別式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,

即k2m2>9b2﹣9m2,

∵b=m﹣ m,

∴k2m2>9(m﹣ m)2﹣9m2,

即k2>k2﹣6k,

則k>0,

∴l(xiāng)不過原點(diǎn)且與C有兩個交點(diǎn)的充要條件是k>0,k≠3,

由(1)知OM的方程為y= x,

設(shè)P的橫坐標(biāo)為xP

,即xP=

將點(diǎn)( ,m)的坐標(biāo)代入l的方程得b=

即l的方程為y=kx+ ,

將y= x,代入y=kx+ ,

得kx+ = x

解得xM=

四邊形OAPB為平行四邊形當(dāng)且僅當(dāng)線段AB與線段OP互相平分,即xP=2xM,

于是 =2×

解得k1=4﹣ 或k2=4+ ,

∵ki>0,ki≠3,i=1,2,

∴當(dāng)l的斜率為4﹣ 或4+ 時,四邊形OAPB能為平行四邊形


【解析】(1)聯(lián)立直線方程和橢圓方程,求出對應(yīng)的直線斜率即可得到結(jié)論.(2)四邊形OAPB為平行四邊形當(dāng)且僅當(dāng)線段AB與線段OP互相平分,即xP=2xM , 建立方程關(guān)系即可得到結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一艘船在航行過程中發(fā)現(xiàn)前方的河道上有一座圓拱橋.在正常水位時,拱橋最高點(diǎn)距水面8m,拱橋內(nèi)水面寬32m,船只在水面以上部分高6.5m,船頂部寬8m,故通行無阻,如圖所示.

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求正常水位時圓弧所在的圓的方程;
(2)近日水位暴漲了2m,船已經(jīng)不能通過橋洞了.船員必須加重船載,降低船身在水面以上的高度,試問:船身至少降低多少米才能通過橋洞?(精確到0.1m,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)雙曲線 的離心率e=2,右焦點(diǎn)為F(c,0),方程ax2+bx﹣c=0的兩個實(shí)根分別為x1和x2 , 則點(diǎn)P(x1 , x2) 滿足(
A.必在圓x2+y2=2內(nèi)
B.必在圓x2+y2=2外
C.必在圓x2+y2=2上
D.以上三種情形都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線Cx2﹣y2=1及直線l:y=kx﹣1.
(1)若l與C左支交于兩個不同的交點(diǎn),求實(shí)數(shù)k的取值范圍;
(2)若l與C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),且△AOB的面積為 ,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)向量 =( sinx,sinx), =(cosx,sinx),x∈[0, ]
(1)若| |=| |,求x的值;
(2)設(shè)函數(shù)f(x)= ,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別是a,b,c,a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,則△ABC面積的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立的極坐標(biāo)系中,圓的極坐標(biāo)方程為

(1)求直線被圓截得的弦長;

(2)若點(diǎn)的坐標(biāo)為,直線與圓交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1+3a2+32a3+…+3n1an= ,n∈N+
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)anbn=n,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中, ,點(diǎn)分別在邊上,且, 于點(diǎn).現(xiàn)將沿折起,使得平面平面,得到圖2.

(Ⅰ)在圖2中,求證:

(Ⅱ)若點(diǎn)是線段上的一動點(diǎn),問點(diǎn)什么位置時,二面角的余弦值為

查看答案和解析>>

同步練習(xí)冊答案